Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectrotemporal shaping of itinerant photons via distributed nanomechanics

Abstract

Efficient phase manipulation of light is the cornerstone of many advanced photonic applications1,2,3,4. However, the pursuit of compact, broadband and deep phase control of light has been hindered by the finite nonlinearity of the optical materials available for integrated photonics5,6. Here, we propose a dynamically driven photonic structure for deep phase manipulation and coherent spectrotemporal control of light based on distributed nanomechanics. We experimentally demonstrate the quasi-phase-matched interaction between stationary mechanical vibration and itinerant optical fields, which is used to generate an on-chip modulated frequency comb over 1.15 THz (160 lines), corresponding to a phase modulation depth of over 21.6π. In addition, an optical time-lens effect induced by mechanical vibration is realized, leading to optical pulse compression of over 70-fold to obtain a minimum pulse duration of 1.02 ps. The high efficiency and versatility make such mechanically driven dynamic photonic structures ideal for realizing complex optical control schemes, such as lossless non-reciprocity7, frequency division optical communication1 and optical frequency comb division8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrated deep phase modulation based on a distributed nanomechanical–photonic waveguide.
Fig. 2: Device characterization.
Fig. 3: On-chip modulated comb generation.
Fig. 4: Pulse compression with a mechanical time lens.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ho, K.-P. Phase-Modulated Optical Communication Systems (Springer Science & Business Media, Berlin, 2005).

  2. Agrawal, G. P. Fiber-optic Communication Systems Vol. 222 (John Wiley & Sons, New York, NY, 2012).

  3. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  4. Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

    Article  ADS  Google Scholar 

  5. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

    Article  ADS  Google Scholar 

  6. Reed, G. T., Mashanovich, G., Gardes, F. & Thomson, D. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

    Article  ADS  Google Scholar 

  7. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    Article  ADS  Google Scholar 

  8. Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

    Article  ADS  Google Scholar 

  9. Kolner, B. H. & Nazarathy, M. Temporal imaging with a time lens. Opt. Lett. 14, 630–632 (1989).

    Article  ADS  Google Scholar 

  10. Karpiński, M., Jachura, M., Wright, L. J. & Smith, B. J. Bandwidth manipulation of quantum light by an electro-optic time lens. Nat. Photon. 11, 53–57 (2017).

    Article  ADS  Google Scholar 

  11. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article  ADS  Google Scholar 

  12. Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    Article  ADS  Google Scholar 

  13. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  14. Feng, L. et al. Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729–733 (2011).

    Article  ADS  Google Scholar 

  15. Sounas, D. L., Caloz, C. & Alu, A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4, 2407 (2013).

    Article  ADS  Google Scholar 

  16. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  17. Kippenberg, T. J., Holzwarth, R. & Diddams, S. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  18. Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).

    Article  ADS  Google Scholar 

  19. Bennett, C. V., Scott, R. P. & Kolner, B. H. Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope. Appl. Phys. Lett. 65, 2513–2515 (1994).

    Article  ADS  Google Scholar 

  20. Bennett, C. V. & Kolner, B. H. Principles of parametric temporal imaging. Part I. System configuration. IEEE J. Quant. Electron 36, 430–437 (2000).

    Article  ADS  Google Scholar 

  21. Salem, R. et al. Optical time lens based on four-wave mixing on a silicon chip. Opt. Lett. 33, 1047–1049 (2008).

    Article  ADS  Google Scholar 

  22. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  23. Fan, L. et al. Integrated optomechanical single-photon frequency shifter. Nat. Photon. 10, 766–770 (2016).

    Article  ADS  Google Scholar 

  24. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  ADS  Google Scholar 

  25. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    Article  ADS  Google Scholar 

  26. Kittlaus, E. A., Shin, H. & Rakich, P. T. Large Brillouin amplification in silicon. Nat. Photon. 10, 463–467 (2016).

    Article  ADS  Google Scholar 

  27. Boyd, R. W. Nonlinear Optics (Academic Press, Cambridge, MA, 2003).

  28. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008).

    Article  ADS  Google Scholar 

  29. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  30. Ishizawa, A. et al. Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser. Opt. Express 21, 29186–29194 (2013).

    Article  ADS  Google Scholar 

  31. Xiong, C. et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14, 095014 (2012).

    Article  ADS  Google Scholar 

  32. Wu, R., Supradeepa, V., Long, C. M., Leaird, D. E. & Weiner, A. M. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35, 3234–3236 (2010).

    Article  ADS  Google Scholar 

  33. DeLong, K., Trebino, R., Hunter, J. & White, W. Frequency-resolved optical gating with the use of second-harmonic generation. J. Opt. Soc. Am. B 11, 2206–2215 (1994).

    Article  ADS  Google Scholar 

  34. Bryan, D., Gerson, R. & Tomaschke, H. Increased optical damage resistance in lithium niobate. Appl. Phys. Lett. 44, 847–849 (1984).

    Article  ADS  Google Scholar 

  35. Jung, H., Stoll, R., Guo, X., Fischer, D. & Tang, H. X. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 1, 396–399 (2014).

    Article  Google Scholar 

  36. Fang, K. & Fan, S. Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. Phys. Rev. Lett. 111, 203901 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support from an LPS/ARO grant (W911NF-14-1-0563), an AFOSR MURI grant (FA9550-15-1-0029), a NSF EFRI grant (EFMA-1640959) and the DARPA SCOUT programme, as well as the Packard Foundation. The facilities used were supported by Yale Institute for Nanoscience and Quantum Engineering and NSF MRSEC DMR 1119826. We thank L. Jiang for discussions, and M. Power, M. Rooks and L. Frunzio for assistance with device fabrication.

Author information

Authors and Affiliations

Authors

Contributions

H.X.T., L.F. and C.-L.Z. conceived the experiment. L.F. fabricated the device. N.Z. fabricated the 3D cavity. L.F. and N.Z. performed the experiment. L.F. and C.-L.Z. analysed the data. All authors contributed to writing the manuscript. H.X.T. supervised the work.

Corresponding author

Correspondence to Hong X. Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary theory and discussion, Supplementary Figures 1–4 and Supplementary References 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Zou, CL., Zhu, N. et al. Spectrotemporal shaping of itinerant photons via distributed nanomechanics. Nat. Photonics 13, 323–327 (2019). https://doi.org/10.1038/s41566-019-0375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0375-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing