Article | Published:

Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects

Nature Photonicsvolume 13pages289295 (2019) | Download Citation


Light is a powerful tool to manipulate matter, but existing approaches often necessitate focused, high-intensity light that limits the manipulated object’s shape, material and size. Here, we report that self-stabilizing optical manipulation of macroscopic—millimetre-, centimetre- and even metre-scale—objects could be achieved by controlling the anisotropy of light scattering along the object’s surface. In a scalable design that features silicon resonators on silica substrate, we identify nanophotonic structures that can self-stabilize when rotated and/or translated relative to the optical axis. Nanoscale control of scattering across a large area creates restoring behaviour by engineering the scattered phase, without needing to focus incident light or excessively constrain the shape, size or material composition of the object. Our findings may lead to platforms for manipulating macroscopic objects, with applications ranging from contactless wafer-scale fabrication and assembly, to trajectory control for ultra-light spacecraft and even laser-propelled light sails for space exploration.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

  2. 2.

    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

  3. 3.

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

  4. 4.

    Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nat. Photon. 2, 675–678 (2008).

  5. 5.

    Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).

  6. 6.

    Woerdemann, M., Alpmann, C., Esseling, M. & Denz, C. Advanced optical trapping by complex beam shaping. Laser Photon. Rev. 7, 839–854 (2013).

  7. 7.

    Taylor, M. A., Waleed, M., Stilgoe, A. B., Rubinsztein-Dunlop, H. & Bowen, W. P. Enhanced optical trapping via structured scattering. Nat. Photon. 9, 669–673 (2015).

  8. 8.

    Stevenson, D. J., Gunn-Moore, F. & Dholakia, K. Light forces the pace: optical manipulation for biophotonics. J. Biomed. Opt. 15, 41503 (2010).

  9. 9.

    Fazal, F. M. & Block, S. M. Optical tweezers study life under tension. Nat. Photon. 5, 318–321 (2011).

  10. 10.

    MacDonald, M. P., Spalding, G. C. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003).

  11. 11.

    Padgett, M. & Di Leonardo, R. Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip 11, 1196–1205 (2011).

  12. 12.

    Grier, D. G. Optical tweezers in colloid and interface science. Curr. Opin. Colloid In. 2, 264–270 (1997).

  13. 13.

    Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2009).

  14. 14.

    Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 33015 (2010).

  15. 15.

    Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011).

  16. 16.

    Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

  17. 17.

    Neukirch, L. P., von Haartman, E., Rosenholm, J. M. & Nick Vamivakas, A. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nat. Photon. 9, 653–657 (2015).

  18. 18.

    Ricci, F. et al. Optically levitated nanoparticle as a model system for stochastic bistable dynamics. Nat. Commun. 8, 15141 (2017).

  19. 19.

    Bhattacharya, M., Vamivakas, A. N. & Barker, P. Levitated optomechanics: introduction. J. Opt. Soc. Am. B 34, LO1–LO2 (2017).

  20. 20.

    Cihan, A. F., Curto, A. G., Raza, S., Kik, P. G. & Brongersma, M. L. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nat. Photon. 12, 284–290 (2018).

  21. 21.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

  22. 22.

    Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

  23. 23.

    Fattal, D., Li, J., Peng, Z., Fiorentino, M. & Beausoleil, R. G. Flat dielectric grating reflectors with focusing abilities. Nat. Photon. 4, 466–470 (2010).

  24. 24.

    Kamali, S. M., Arbabi, E., Arbabi, A. & Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 7, 1041–1068 (2018).

  25. 25.

    Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

  26. 26.

    Aieta, F. et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 12, 1702–1706 (2012).

  27. 27.

    Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

  28. 28.

    Monticone, F., Estakhri, N. M. & Alù, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 110, 203903 (2013).

  29. 29.

    Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

  30. 30.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  31. 31.

    Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photon. 11, 415–420 (2017).

  32. 32.

    Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).

  33. 33.

    Swartzlander, G. A., Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nat. Photon. 5, 48–51 (2010).

  34. 34.

    Srinivasan, P. et al. Stability of laser-propelled wafer satellites. In Planetary Defense and Space Environment Applications (ed. Hughes, G. B.) 998105 (Conference Series Vol. 9981, SPIE, 2016).

  35. 35.

    Manchester, Z. & Loeb, A. Stability of a light sail riding on a laser beam. Astrophys. J. Lett. 837, L20 (2017).

  36. 36.

    Popova, H., Efendiev, M. & Gabitov, I. On the stability of a space vehicle riding on an intense laser beam. Preprint at (2016).

  37. 37.

    Marx, G. Interstellar vehicle propelled by terrestrial laser beam. Nature 211, 22–23 (1966).

  38. 38.

    Redding, J. L. Interstellar vehicle propelled by terrestrial laser beam. Nature 213, 588–589 (1967).

  39. 39.

    Forward, R. L. Roundtrip interstellar travel using laser-pushed lightsails. J. Spacecraft Rockets 21, 187–195 (1984).

  40. 40.

    Breakthrough Starshot Breakthrough Initiatives (2018).

  41. 41.

    Lubin, P. A roadmap to interstellar flight. J. Br. Interplanet. Soc. 69, 40–72 (2016).

  42. 42.

    Swartzlander, G. A. Radiation pressure on a diffractive sailcraft. J. Opt. Soc. Am. B 34, C25–C30 (2017).

  43. 43.

    Atwater, H. A. et al. Materials challenges for the Starshot lightsail. Nat. Mater. 17, 861–867 (2018).

  44. 44.

    Kulkarni, N., Lubin, P. & Zhang, Q. Relativistic spacecraft propelled by directed energy. Astron. J. 155, 155 (2018).

  45. 45.

    Guccione, G. et al. Scattering-free optical levitation of a cavity mirror. Phys. Rev. Lett. 111, 183001 (2013).

  46. 46.

    Ilic, O. et al. Topologically enabled optical nanomotors. Sci. Adv. 3, e1602738 (2017).

  47. 47.

    Ilic, O., Went, C. M. & Atwater, H. A. Nanophotonic heterostructures for efficient propulsion and radiative cooling of relativistic light sails. Nano Lett. 18, 5583–5589 (2018).

  48. 48.

    Jiang, H.-R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010).

  49. 49.

    Qian, B., Montiel, D., Bregulla, A., Cichos, F. & Yang, H. Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chem. Sci. 4, 1420–1429 (2013).

  50. 50.

    Shvedov, V., Davoyan, A. R., Hnatovsky, C., Engheta, N. & Krolikowski, W. A long-range polarization-controlled optical tractor beam. Nat. Photon. 8, 846–850 (2014).

  51. 51.

    Ilic, O., Kaminer, I., Lahini, Y., Buljan, H. & Soljačić, M. Exploiting optical asymmetry for controlled guiding of particles with light. ACS Photon. 3, 197–202 (2016).

  52. 52.

    Lu, J. et al. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force. Phys. Rev. Lett. 118, 043601 (2017).

  53. 53.

    Tkachenko, G. et al. Optical trapping with planar silicon metalenses. Opt. Lett. 43, 3224–3227 (2018).

  54. 54.

    Markovich, H., Shishkin, I. I., Hendler, N. & Ginzburg, P. Optical manipulation along an optical axis with a polarization sensitive meta-lens. Nano Lett. 18, 5024–5029 (2018).

  55. 55.

    Dogariu, A., Sukhov, S. & Sáenz, J. Optically induced ‘negative forces’. Nat. Photon. 7, 24–27 (2012).

  56. 56.

    Chen, J., Ng, J., Lin, Z. & Chan, C. T. Optical pulling force. Nat. Photon. 5, 531–534 (2011).

  57. 57.

    Achouri, K. & Caloz, C. Metasurface solar sail for flexible radiation pressure control. Preprint at (2017).

Download references


The authors thank colleagues from the Breakthrough Starshot Lightsail committee for discussions, and acknowledge financial support from the Air Force Office of Scientific Research under grant number FA9550-16-1-0019. The authors also acknowledge discussions with A. Davoyan, O. Miller, Z. Manchester, M. Kelzenberg, I. Kaminer, C. Went, W. Whitney, M. Sherrott, J. Wong, D. Jariwala, P. Jha and H. Akbari.

Author information


  1. Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA, USA

    • Ognjen Ilic
    •  & Harry A. Atwater


  1. Search for Ognjen Ilic in:

  2. Search for Harry A. Atwater in:


All authors discussed the results and made critical contributions to the work.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Harry A. Atwater.

Supplementary information

  1. Supplementary Information

    This file contains more information on the work and Supplementary Figures 1–8.

  2. Supplementary Video 1

    Time evolution of the dynamics of a structure that is initially both displaced (0. 5D) and tilted (10%).

About this article

Publication history




Issue Date


Further reading