Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient quantum memory for single-photon polarization qubits


A quantum memory, for storing and retrieving flying photonic quantum states, is a key interface for realizing long-distance quantum communication and large-scale quantum computation. While many experimental schemes demonstrating high storage and retrieval efficiency have been performed with weak coherent light pulses, all quantum memories for true single photons achieved so far have efficiencies far below 50%, a threshold value for practical applications. Here, we report the demonstration of a quantum memory for single-photon polarization qubits with an efficiency of >85% and a fidelity of >99%, based on balanced two-channel electromagnetically induced transparency in laser-cooled rubidium atoms. For the single-channel quantum memory, the optimized efficiency for storing and retrieving single-photon temporal waveforms can be as high as 90.6%. This result pushes the photonic quantum memory closer to practical applications in quantum information processing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up and energy level scheme of the single-photon quantum memory.
Fig. 2: Characterization of the two balanced channels of the quantum memory.
Fig. 3: Quantum memory for single-photon polarization qubits.
Fig. 4: The overall quantum memory performance.
Fig. 5: Optimal storage of a single-channel memory.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. Kimble, H. J. The quantum Internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  2. Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    Article  ADS  Google Scholar 

  3. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  4. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  5. Duan, L., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  6. Grosshans, F. & Grangier, P. Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A 64, 010301 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  7. Varnava, M., Browne, D. & Rudolph, T. Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett. 97, 120501 (2006).

    Article  ADS  Google Scholar 

  8. Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    Article  ADS  Google Scholar 

  9. Cho, Y.-W. et al. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3, 100–107 (2016).

    Article  Google Scholar 

  10. Reim, K. F. et al. Towards high-speed optical quantum memories. Nat. Photon. 4, 218–221 (2010).

    Article  ADS  Google Scholar 

  11. Reim, K. F. et al. Single-photon-level quantum memory at room temperature. Phys. Rev. Lett. 107, 053603 (2011).

    Article  ADS  Google Scholar 

  12. Geng, J. et al. Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth. New J. Phys. 16, 113053 (2014).

    Article  ADS  Google Scholar 

  13. Chen, Y.-H. et al. Coherent optical memory with high storage efficiency and large fractional delay. Phys. Rev. Lett. 110, 083601 (2013).

    Article  ADS  Google Scholar 

  14. Vernaz-Gris, P., Huang, K., Cao, M., Alexandra, S. S. & Julien, L. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat. Commun. 9, 363 (2018).

    Article  ADS  Google Scholar 

  15. Hsiao, Y.-F. et al. Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett. 120, 183602 (2018).

    Article  ADS  Google Scholar 

  16. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  17. Zhou, S. et al. Optimal storage and retrieval of single-photon waveforms. Opt. Express 20, 24124–24131 (2012).

    Article  ADS  Google Scholar 

  18. Ding, D.-S., Zhou, Z.-Y., Shi, B.-S. & Guo, G.-C. Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527 (2013).

    Article  Google Scholar 

  19. Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–512 (2011).

    Article  ADS  Google Scholar 

  20. Ding, D.-S. et al. Raman quantum memory of photonic polarized entanglement. Nat. Photon. 9, 332–338 (2015).

    Article  ADS  Google Scholar 

  21. Yang, S.-J., Wang, X.-J., Bao, X.-H. & Pan, J.-W. An efficient quantum light–matter interface with sub-second lifetime. Nat. Photon. 10, 381–384 (2016).

    Article  ADS  Google Scholar 

  22. Novikova, I. et al. Optimal control of light pulse storage and retrieval. Phys. Rev. Lett. 98, 243602 (2007).

    Article  ADS  Google Scholar 

  23. Appel, J., Figueroa, E., Korystov, D., Lobino, M. & Lvovsky, A. I. Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008).

    Article  ADS  Google Scholar 

  24. Zhang, H. et al. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat. Photon. 5, 628–632 (2011).

    Article  ADS  Google Scholar 

  25. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    Article  ADS  Google Scholar 

  26. Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

    Article  ADS  Google Scholar 

  27. Zhang, S. et al. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth. Rev. Sci. Instrum. 83, 073102 (2012).

    Article  ADS  Google Scholar 

  28. Zhao, L. et al. Photon pairs with coherence time exceeding one microsecond. Optica 1, 84–88 (2014).

    Article  ADS  Google Scholar 

  29. Gorshkov, A. V., André, A., Fleischhauer, M., Sørensen, A. S. & Lukin, M. D. Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007).

    Article  ADS  Google Scholar 

  30. Zhao, L. et al. Shaping the biphoton temporal waveform with spatial light modulation. Phys. Rev. Lett. 115, 193601 (2015).

    Article  ADS  Google Scholar 

  31. Kolchin, P., Belthangady, C., Du, S., Yin, G. Y. & Harris, S. E. Electro-optic modulation of single photons. Phys. Rev. Lett. 101, 103601 (2008).

    Article  ADS  Google Scholar 

  32. Chen, J. F. et al. Shaping biphoton temporal waveforms with modulated classical fields. Phys. Rev. Lett. 104, 183604 (2010).

    Article  ADS  Google Scholar 

  33. Du, S. Quantum-state purity of heralded single photons produced from frequency-anticorrelated biphotons. Phys. Rev. A 92, 043836 (2015).

    Article  ADS  Google Scholar 

  34. Qian, P. et al. Temporal purity and quantum interference of single photons from two independent cold atomic ensembles. Phys. Rev. Lett. 117, 013602 (2016).

    Article  ADS  Google Scholar 

  35. Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986).

    Article  ADS  Google Scholar 

  36. Zhang, S. et al. Optical precursor of a single photon. Phys. Rev. Lett. 106, 243602 (2011).

    Article  ADS  Google Scholar 

  37. Du, S., Belthangady, C., Kolchin, P., Yin, G. Y. & Harris, S. E. Observation of optical precursors at the biphoton level. Opt. Lett. 33, 2149–2151 (2008).

    Article  ADS  Google Scholar 

Download references


This work was supported by the National Key Research and Development Program of China (grant numbers 2016YFA0301803 and 2016YFA0302800), the National Natural Science Foundation of China (grant numbers 11474107, 61378012, 91636218, 11822403, 11804104, 11804105 and U1801661), and the Natural Science Foundation of Guangdong Province (grant numbers 2015TQ01X715, 2014A030306012 and 2018A0303130066). S.D. acknowledges the support from the Hong Kong Research Grants Council (project numbers 16304817 and C6005-17G) and the William Mong Institute of Nano Science and Technology (project number WMINST19SC05).

Author information

Authors and Affiliations



S.C.Z., S.D., H.Y. and S.-L.Z. designed the experiment. Y.F.W., J.F.L., S.C.Z., K.Y.S., Y.R.Z. and K.Y.L. carried out the experiments. Y.F.W., J.F.L., S.C.Z., K.Y.S. and H.Y. conducted the raw data analysis. S.C.Z., S.D., H.Y. and S.-L.Z. wrote the paper, and all authors discussed the content of the paper. H.Y. and S.-L.Z. supervised the project.

Corresponding authors

Correspondence to Hui Yan or Shi-Liang Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, J., Zhang, S. et al. Efficient quantum memory for single-photon polarization qubits. Nat. Photonics 13, 346–351 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing