Efficient quantum memory for single-photon polarization qubits


A quantum memory, for storing and retrieving flying photonic quantum states, is a key interface for realizing long-distance quantum communication and large-scale quantum computation. While many experimental schemes demonstrating high storage and retrieval efficiency have been performed with weak coherent light pulses, all quantum memories for true single photons achieved so far have efficiencies far below 50%, a threshold value for practical applications. Here, we report the demonstration of a quantum memory for single-photon polarization qubits with an efficiency of >85% and a fidelity of >99%, based on balanced two-channel electromagnetically induced transparency in laser-cooled rubidium atoms. For the single-channel quantum memory, the optimized efficiency for storing and retrieving single-photon temporal waveforms can be as high as 90.6%. This result pushes the photonic quantum memory closer to practical applications in quantum information processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental set-up and energy level scheme of the single-photon quantum memory.
Fig. 2: Characterization of the two balanced channels of the quantum memory.
Fig. 3: Quantum memory for single-photon polarization qubits.
Fig. 4: The overall quantum memory performance.
Fig. 5: Optimal storage of a single-channel memory.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Kimble, H. J. The quantum Internet. Nature 453, 1023–1030 (2008).

    ADS  Article  Google Scholar 

  2. 2.

    Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    ADS  Article  Google Scholar 

  3. 3.

    Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    ADS  Article  Google Scholar 

  5. 5.

    Duan, L., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    Grosshans, F. & Grangier, P. Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A 64, 010301 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Varnava, M., Browne, D. & Rudolph, T. Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett. 97, 120501 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Cho, Y.-W. et al. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3, 100–107 (2016).

    Article  Google Scholar 

  10. 10.

    Reim, K. F. et al. Towards high-speed optical quantum memories. Nat. Photon. 4, 218–221 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    Reim, K. F. et al. Single-photon-level quantum memory at room temperature. Phys. Rev. Lett. 107, 053603 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Geng, J. et al. Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth. New J. Phys. 16, 113053 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Chen, Y.-H. et al. Coherent optical memory with high storage efficiency and large fractional delay. Phys. Rev. Lett. 110, 083601 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Vernaz-Gris, P., Huang, K., Cao, M., Alexandra, S. S. & Julien, L. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat. Commun. 9, 363 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Hsiao, Y.-F. et al. Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett. 120, 183602 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  17. 17.

    Zhou, S. et al. Optimal storage and retrieval of single-photon waveforms. Opt. Express 20, 24124–24131 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Ding, D.-S., Zhou, Z.-Y., Shi, B.-S. & Guo, G.-C. Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527 (2013).

    Article  Google Scholar 

  19. 19.

    Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–512 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Ding, D.-S. et al. Raman quantum memory of photonic polarized entanglement. Nat. Photon. 9, 332–338 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Yang, S.-J., Wang, X.-J., Bao, X.-H. & Pan, J.-W. An efficient quantum light–matter interface with sub-second lifetime. Nat. Photon. 10, 381–384 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Novikova, I. et al. Optimal control of light pulse storage and retrieval. Phys. Rev. Lett. 98, 243602 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    Appel, J., Figueroa, E., Korystov, D., Lobino, M. & Lvovsky, A. I. Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    Zhang, H. et al. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat. Photon. 5, 628–632 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Zhang, S. et al. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth. Rev. Sci. Instrum. 83, 073102 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Zhao, L. et al. Photon pairs with coherence time exceeding one microsecond. Optica 1, 84–88 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    Gorshkov, A. V., André, A., Fleischhauer, M., Sørensen, A. S. & Lukin, M. D. Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007).

    ADS  Article  Google Scholar 

  30. 30.

    Zhao, L. et al. Shaping the biphoton temporal waveform with spatial light modulation. Phys. Rev. Lett. 115, 193601 (2015).

    ADS  Article  Google Scholar 

  31. 31.

    Kolchin, P., Belthangady, C., Du, S., Yin, G. Y. & Harris, S. E. Electro-optic modulation of single photons. Phys. Rev. Lett. 101, 103601 (2008).

    ADS  Article  Google Scholar 

  32. 32.

    Chen, J. F. et al. Shaping biphoton temporal waveforms with modulated classical fields. Phys. Rev. Lett. 104, 183604 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Du, S. Quantum-state purity of heralded single photons produced from frequency-anticorrelated biphotons. Phys. Rev. A 92, 043836 (2015).

    ADS  Article  Google Scholar 

  34. 34.

    Qian, P. et al. Temporal purity and quantum interference of single photons from two independent cold atomic ensembles. Phys. Rev. Lett. 117, 013602 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986).

    ADS  Article  Google Scholar 

  36. 36.

    Zhang, S. et al. Optical precursor of a single photon. Phys. Rev. Lett. 106, 243602 (2011).

    ADS  Article  Google Scholar 

  37. 37.

    Du, S., Belthangady, C., Kolchin, P., Yin, G. Y. & Harris, S. E. Observation of optical precursors at the biphoton level. Opt. Lett. 33, 2149–2151 (2008).

    ADS  Article  Google Scholar 

Download references


This work was supported by the National Key Research and Development Program of China (grant numbers 2016YFA0301803 and 2016YFA0302800), the National Natural Science Foundation of China (grant numbers 11474107, 61378012, 91636218, 11822403, 11804104, 11804105 and U1801661), and the Natural Science Foundation of Guangdong Province (grant numbers 2015TQ01X715, 2014A030306012 and 2018A0303130066). S.D. acknowledges the support from the Hong Kong Research Grants Council (project numbers 16304817 and C6005-17G) and the William Mong Institute of Nano Science and Technology (project number WMINST19SC05).

Author information




S.C.Z., S.D., H.Y. and S.-L.Z. designed the experiment. Y.F.W., J.F.L., S.C.Z., K.Y.S., Y.R.Z. and K.Y.L. carried out the experiments. Y.F.W., J.F.L., S.C.Z., K.Y.S. and H.Y. conducted the raw data analysis. S.C.Z., S.D., H.Y. and S.-L.Z. wrote the paper, and all authors discussed the content of the paper. H.Y. and S.-L.Z. supervised the project.

Corresponding authors

Correspondence to Hui Yan or Shi-Liang Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, J., Zhang, S. et al. Efficient quantum memory for single-photon polarization qubits. Nat. Photonics 13, 346–351 (2019). https://doi.org/10.1038/s41566-019-0368-8

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing