Abstract

A quantum memory, for storing and retrieving flying photonic quantum states, is a key interface for realizing long-distance quantum communication and large-scale quantum computation. While many experimental schemes demonstrating high storage and retrieval efficiency have been performed with weak coherent light pulses, all quantum memories for true single photons achieved so far have efficiencies far below 50%, a threshold value for practical applications. Here, we report the demonstration of a quantum memory for single-photon polarization qubits with an efficiency of >85% and a fidelity of >99%, based on balanced two-channel electromagnetically induced transparency in laser-cooled rubidium atoms. For the single-channel quantum memory, the optimized efficiency for storing and retrieving single-photon temporal waveforms can be as high as 90.6%. This result pushes the photonic quantum memory closer to practical applications in quantum information processing.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Kimble, H. J. The quantum Internet. Nature 453, 1023–1030 (2008).

  2. 2.

    Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

  3. 3.

    Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

  4. 4.

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

  5. 5.

    Duan, L., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

  6. 6.

    Grosshans, F. & Grangier, P. Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A 64, 010301 (2001).

  7. 7.

    Varnava, M., Browne, D. & Rudolph, T. Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett. 97, 120501 (2006).

  8. 8.

    Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

  9. 9.

    Cho, Y.-W. et al. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3, 100–107 (2016).

  10. 10.

    Reim, K. F. et al. Towards high-speed optical quantum memories. Nat. Photon. 4, 218–221 (2010).

  11. 11.

    Reim, K. F. et al. Single-photon-level quantum memory at room temperature. Phys. Rev. Lett. 107, 053603 (2011).

  12. 12.

    Geng, J. et al. Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth. New J. Phys. 16, 113053 (2014).

  13. 13.

    Chen, Y.-H. et al. Coherent optical memory with high storage efficiency and large fractional delay. Phys. Rev. Lett. 110, 083601 (2013).

  14. 14.

    Vernaz-Gris, P., Huang, K., Cao, M., Alexandra, S. S. & Julien, L. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat. Commun. 9, 363 (2018).

  15. 15.

    Hsiao, Y.-F. et al. Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett. 120, 183602 (2018).

  16. 16.

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  17. 17.

    Zhou, S. et al. Optimal storage and retrieval of single-photon waveforms. Opt. Express 20, 24124–24131 (2012).

  18. 18.

    Ding, D.-S., Zhou, Z.-Y., Shi, B.-S. & Guo, G.-C. Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527 (2013).

  19. 19.

    Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–512 (2011).

  20. 20.

    Ding, D.-S. et al. Raman quantum memory of photonic polarized entanglement. Nat. Photon. 9, 332–338 (2015).

  21. 21.

    Yang, S.-J., Wang, X.-J., Bao, X.-H. & Pan, J.-W. An efficient quantum light–matter interface with sub-second lifetime. Nat. Photon. 10, 381–384 (2016).

  22. 22.

    Novikova, I. et al. Optimal control of light pulse storage and retrieval. Phys. Rev. Lett. 98, 243602 (2007).

  23. 23.

    Appel, J., Figueroa, E., Korystov, D., Lobino, M. & Lvovsky, A. I. Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008).

  24. 24.

    Zhang, H. et al. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat. Photon. 5, 628–632 (2011).

  25. 25.

    Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

  26. 26.

    Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

  27. 27.

    Zhang, S. et al. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth. Rev. Sci. Instrum. 83, 073102 (2012).

  28. 28.

    Zhao, L. et al. Photon pairs with coherence time exceeding one microsecond. Optica 1, 84–88 (2014).

  29. 29.

    Gorshkov, A. V., André, A., Fleischhauer, M., Sørensen, A. S. & Lukin, M. D. Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007).

  30. 30.

    Zhao, L. et al. Shaping the biphoton temporal waveform with spatial light modulation. Phys. Rev. Lett. 115, 193601 (2015).

  31. 31.

    Kolchin, P., Belthangady, C., Du, S., Yin, G. Y. & Harris, S. E. Electro-optic modulation of single photons. Phys. Rev. Lett. 101, 103601 (2008).

  32. 32.

    Chen, J. F. et al. Shaping biphoton temporal waveforms with modulated classical fields. Phys. Rev. Lett. 104, 183604 (2010).

  33. 33.

    Du, S. Quantum-state purity of heralded single photons produced from frequency-anticorrelated biphotons. Phys. Rev. A 92, 043836 (2015).

  34. 34.

    Qian, P. et al. Temporal purity and quantum interference of single photons from two independent cold atomic ensembles. Phys. Rev. Lett. 117, 013602 (2016).

  35. 35.

    Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986).

  36. 36.

    Zhang, S. et al. Optical precursor of a single photon. Phys. Rev. Lett. 106, 243602 (2011).

  37. 37.

    Du, S., Belthangady, C., Kolchin, P., Yin, G. Y. & Harris, S. E. Observation of optical precursors at the biphoton level. Opt. Lett. 33, 2149–2151 (2008).

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant numbers 2016YFA0301803 and 2016YFA0302800), the National Natural Science Foundation of China (grant numbers 11474107, 61378012, 91636218, 11822403, 11804104, 11804105 and U1801661), and the Natural Science Foundation of Guangdong Province (grant numbers 2015TQ01X715, 2014A030306012 and 2018A0303130066). S.D. acknowledges the support from the Hong Kong Research Grants Council (project numbers 16304817 and C6005-17G) and the William Mong Institute of Nano Science and Technology (project number WMINST19SC05).

Author information

Author notes

  1. These authors contributed equally: Yunfei Wang, Jianfeng Li, Shanchao Zhang.

Affiliations

  1. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, China

    • Yunfei Wang
    • , Jianfeng Li
    • , Shanchao Zhang
    • , Keyu Su
    • , Yiru Zhou
    • , Kaiyu Liao
    • , Shengwang Du
    • , Hui Yan
    •  & Shi-Liang Zhu
  2. Department of Physics & William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China

    • Shengwang Du
  3. National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China

    • Shi-Liang Zhu

Authors

  1. Search for Yunfei Wang in:

  2. Search for Jianfeng Li in:

  3. Search for Shanchao Zhang in:

  4. Search for Keyu Su in:

  5. Search for Yiru Zhou in:

  6. Search for Kaiyu Liao in:

  7. Search for Shengwang Du in:

  8. Search for Hui Yan in:

  9. Search for Shi-Liang Zhu in:

Contributions

S.C.Z., S.D., H.Y. and S.-L.Z. designed the experiment. Y.F.W., J.F.L., S.C.Z., K.Y.S., Y.R.Z. and K.Y.L. carried out the experiments. Y.F.W., J.F.L., S.C.Z., K.Y.S. and H.Y. conducted the raw data analysis. S.C.Z., S.D., H.Y. and S.-L.Z. wrote the paper, and all authors discussed the content of the paper. H.Y. and S.-L.Z. supervised the project.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Hui Yan or Shi-Liang Zhu.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41566-019-0368-8