Article | Published:

Transverse localization of transmission eigenchannels

Nature Photonicsvolume 13pages352358 (2019) | Download Citation

Abstract

Transmission eigenchannels are building blocks of coherent wave transport in diffusive media, and selective excitation of individual eigenchannels can lead to diverse transport behaviour. An essential yet poorly understood property is the transverse spatial profile of each eigenchannel, which is relevant for the associated energy density and critical for coupling light into and out of it. Here, we discover that the transmission eigenchannels of a disordered slab possess exponentially localized incident and outgoing profiles, even in the diffusive regime far from Anderson localization. Such transverse localization arises from a combination of reciprocity, local coupling of spatial modes and non-local correlations of scattered waves. Experimentally, we observe signatures of such localization even with finite illumination area. The transverse localization of high-transmission channels enhances optical energy densities inside turbid media, which will be important for light–matter interactions and imaging applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Dorokhov, O. N. On the coexistence of localized and extended electronic states in the metallic phase. Solid State Commun. 51, 381–384 (1984).

  2. 2.

    Imry, Y. Active transmission channels and universal conductance fluctuations. Europhys. Lett. 1, 249–256 (1986).

  3. 3.

    Mello, P. A., Pereyra, P. & Kumar, N. Macroscopic approach to multichannel disordered conductors. Ann. Phys. 181, 290–317 (1988).

  4. 4.

    Nazarov, Y. V. Limits of universality in disordered conductors. Phys. Rev. Lett. 73, 134–137 (1994).

  5. 5.

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

  6. 6.

    Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206 (2015).

  7. 7.

    Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).

  8. 8.

    Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

  9. 9.

    Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photon. 6, 581–585 (2012).

  10. 10.

    Kim, M., Choi, W., Yoon, C., Kim, G. H. & Choi, W. Relation between transmission eigenchannels and single-channel optimizing modes in a disordered medium. Opt. Lett. 38, 2994–2996 (2013).

  11. 11.

    Popoff, S. M., Goetschy, A., Liew, S. F., Stone, A. D. & Cao, H. Coherent control of total transmission of light through disordered media. Phys. Rev. Lett. 112, 133903 (2014).

  12. 12.

    Bosch, J., Goorden, S. A. & Mosk, A. P. Frequency width of open channels in multiple scattering media. Opt. Express 24, 26472–26478 (2016).

  13. 13.

    Hsu, C. W., Liew, S. F., Goetschy, A., Cao, H. & Stone, A. D. Correlation-enhanced control of wave focusing in disordered media. Nat. Phys. 13, 497–502 (2017).

  14. 14.

    Sarma, R., Yamilov, A. G., Petrenko, S., Bromberg, Y. & Cao, H. Control of energy density inside a disordered medium by coupling to open or closed channels. Phys. Rev. Lett. 117, 086803 (2016).

  15. 15.

    Choi, W., Mosk, A. P., Park, Q.-H. & Choi, W. Transmission eigenchannels in a disordered medium. Phys. Rev. B 83, 134207 (2011).

  16. 16.

    Gérardin, B., Laurent, J., Derode, A., Prada, C. & Aubry, A. Full transmission and reflection of waves propagating through a maze of disorder. Phys. Rev. Lett. 113, 173901 (2014).

  17. 17.

    Davy, M., Shi, Z., Park, J., Tian, C. & Genack, A. Z. Universal structure of transmission eigenchannels inside opaque media. Nat. Commun. 6, 6893 (2015).

  18. 18.

    Ojambati, O. S., Yılmaz, H., Lagendijk, A., Mosk, A. P. & Vos, W. L. Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium. New J. Phys. 18, 043032 (2016).

  19. 19.

    Koirala, M., Sarma, R., Cao, H. & Yamilov, A. Inverse design of perfectly transmitting eigenchannels in scattering media. Phys. Rev. B 96, 054209 (2017).

  20. 20.

    Hong, P., Ojambati, O. S., Lagendijk, A., Mosk, A. P. & Vos, W. L. Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping. Optica 5, 844–849 (2018).

  21. 21.

    Pendry, J. B. Quasi-extended electron states in strongly disordered systems. J. Phys. C 20, 733 (1987).

  22. 22.

    Bertolotti, J., Gottardo, S., Wiersma, D. S., Ghulinyan, M. & Pavesi, L. Optical necklace states in Anderson localized 1D systems. Phys. Rev. Lett. 94, 113903 (2005).

  23. 23.

    Sebbah, P., Hu, B., Klosner, J. M. & Genack, A. Z. Extended quasimodes within nominally localized random waveguides. Phys. Rev. Lett. 96, 183902 (2006).

  24. 24.

    Choi, W., Park, Q.-H. & Choi, W. Perfect transmission through Anderson localized systems mediated by a cluster of localized modes. Opt. Express 20, 20721–20729 (2012).

  25. 25.

    Peña, A., Girschik, A., Libisch, F., Rotter, S. & Chabanov, A. A. The single-channel regime of transport through random media. Nat. Commun. 5, 3488 (2014).

  26. 26.

    Leseur, O., Pierrat, R., Sáenz, J. J. & Carminati, R. Probing two-dimensional Anderson localization without statistics. Phys. Rev. A 90, 053827 (2014).

  27. 27.

    Skipetrov, S. E. & Page, J. H. Red light for Anderson localization. New J. Phys. 18, 021001 (2016).

  28. 28.

    De Raedt, H., Lagendijk, A. & de Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 47–50 (1989).

  29. 29.

    Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

  30. 30.

    Karbasi, S. et al. Observation of transverse Anderson localization in an optical fiber. Opt. Lett. 37, 2304–2306 (2012).

  31. 31.

    Hsieh, P. et al. Photon transport enhanced by transverse Anderson localization in disordered superlattices. Nat. Phys. 11, 268–274 (2015).

  32. 32.

    Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & Van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945–948 (2008).

  33. 33.

    Cherroret, N., Skipetrov, S. E. & Van Tiggelen, B. A. Transverse confinement of waves in three-dimensional random media. Phys. Rev. E 82, 056603 (2010).

  34. 34.

    Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

  35. 35.

    Kim, M., Choi, W., Choi, Y., Yoon, C. & Choi, W. Transmission matrix of a scattering medium and its applications in biophotonics. Opt. Express 23, 12648–12668 (2015).

  36. 36.

    Yu, H. et al. Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015).

  37. 37.

    Vynck, K., Burresi, M., Riboli, F. & Wiersma, D. S. Photon management in two-dimensional disordered media. Nat. Mater. 11, 1017–1022 (2012).

  38. 38.

    Liew, S. F. et al. Coherent control of photocurrent in a strongly scattering photoelectrochemical system. ACS Photon. 3, 449–455 (2016).

  39. 39.

    Baranger, H. U., DiVincenzo, D. P., Jalabert, R. A. & Stone, A. D. Classical and quantum ballistic-transport anomalies in microjunctions. Phys. Rev. B 44, 10637–10675 (1991).

  40. 40.

    Jalas, D. et al. What is—and what is not—an optical isolator. Nat. Photon. 7, 579–582 (2013).

  41. 41.

    Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

  42. 42.

    Berkovits, R., Kaveh, M. & Feng, S. Memory effect of waves in disordered systems: a real-space approach. Phys. Rev. B 40, 737–740 (1989).

  43. 43.

    Judkewitz, B., Horstmeyer, R., Vellekoop, I. M., Papadopoulos, I. N. & Yang, C. Translation correlations in anisotropically scattering media. Nat. Phys. 11, 684–689 (2015).

  44. 44.

    Osnabrugge, G., Horstmeyer, R., Papadopoulos, I. N., Judkewitz, B. & Vellekoop, I. M. Generalized optical memory effect. Optica 4, 886–892 (2017).

  45. 45.

    Casati, G., Molinari, L. & Izrailev, F. Scaling properties of band random matrices. Phys. Rev. Lett. 64, 1851–1854 (1990).

  46. 46.

    Izrailev, F. M. Simple models of quantum chaos: spectrum and eigenfunctions. Phys. Rep. 196, 299–392 (1990).

  47. 47.

    Fyodorov, Y. V. & Mirlin, A. D. Analytical derivation of the scaling law for the inverse participation ratio in quasi-one-dimensional disordered systems. Phys. Rev. Lett. 69, 1093–1096 (1992).

  48. 48.

    Stephen, M. J. & Cwilich, G. Intensity correlation functions and fluctuations in light scattered from a random medium. Phys. Rev. Lett. 59, 285–287 (1987).

  49. 49.

    Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

  50. 50.

    Mello, P. A., Akkermans, E. & Shapiro, B. Macroscopic approach to correlations in the electronic transmission and reflection from disordered conductors. Phys. Rev. Lett. 61, 459–462 (1988).

  51. 51.

    Pnini, R. & Shapiro, B. Fluctuations in transmission of waves through disordered slabs. Phys. Rev. B 39, 6986–6994 (1989).

  52. 52.

    Berkovits, R. & Feng, S. Correlations in coherent multiple scattering. Phys. Rep. 238, 135–172 (1994).

  53. 53.

    Genack, A. Z., Garcia, N. & Polkosnik, W. Long-range intensity correlation in random media. Phys. Rev. Lett. 65, 2129–2132 (1990).

  54. 54.

    Scheffold, F., Härtl, W., Maret, G. & Matijevíc, E. Observation of long-range correlations in temporal intensity fluctuations of light. Phys. Rev. B 56, 10942–10952 (1997).

  55. 55.

    Sebbah, P., Hu, B., Genack, A. Z., Pnini, R. & Shapiro, B. Spatial-field correlation: the building block of mesoscopic fluctuations. Phys. Rev. Lett. 88, 123901 (2002).

  56. 56.

    Yamilov, A. Relation between channel and spatial mesoscopic correlations in volume-disordered waveguides. Phys. Rev. B 78, 045104 (2008).

  57. 57.

    Strudley, T., Zehender, T., Blejean, C., Bakkers, E. P. A. M. & Muskens, O. Mesoscopic light transport by very strong collective multiple scattering in nanowire mats. Nat. Photon. 7, 413–418 (2013).

  58. 58.

    Fayard, N., Cazé, A., Pierrat, R. & Carminati, R. Intensity correlations between reflected and transmitted speckle patterns. Phys. Rev. A 92, 033827 (2015).

  59. 59.

    Starshynov, I. et al. Non-Gaussian correlations between reflected and transmitted intensity patterns emerging from opaque disordered media. Phys. Rev. X 8, 021041 (2018).

  60. 60.

    Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, Cambridge, 2007).

  61. 61.

    Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

  62. 62.

    Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic Press, San Diego, CA, 1995).

  63. 63.

    Kramer, B. & MacKinnon, A. Localization: theory and experiment. Rep. Prog. Phys. 56, 1469–1564 (1993).

  64. 64.

    Goetschy, A. & Stone, A. D. Filtering random matrices: the effect of incomplete channel control in multiple scattering. Phys. Rev. Lett. 111, 063901 (2013).

Download references

Acknowledgements

We thank A. Mosk, A. Genack, B. Shapiro, F. Scheffold, S. Skipetrov, S. Bittner, S. Rotter and T. Kottos for stimulating discussions and useful feedback. We acknowledge financial support by the Office of Naval Research (ONR) under grant no. MURI N00014-13-0649 and by the US–Israel Binational Science Foundation (BSF) under grant no. 2015509, as well as computational resources provided by the Yale High Performance Computing Cluster (Yale HPC).

Author information

Affiliations

  1. Department of Applied Physics, Yale University, New Haven, CT, USA

    • Hasan Yılmaz
    • , Chia Wei Hsu
    •  & Hui Cao
  2. Department of Physics, Missouri University of Science & Technology, Rolla, MO, USA

    • Alexey Yamilov

Authors

  1. Search for Hasan Yılmaz in:

  2. Search for Chia Wei Hsu in:

  3. Search for Alexey Yamilov in:

  4. Search for Hui Cao in:

Contributions

H.Y. performed the experiments and analysed the data. C.W.H. performed the numerical simulations and fabricated the samples. H.Y. analysed the numerical data. C.W.H. helped with experimental data acquisition and contributed to numerical data analysis. H.C. supervised the project. All authors contributed to the interpretation of the results. H.Y. and C.W.H. prepared the manuscript, H.C. edited it and A.Y. provided feedback.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Hui Cao.

Supplementary information

  1. Supplementary Information

    This file contains more information on the work, Supplementary Figures 1–11 and Supplementary Table 1.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41566-019-0367-9