Abstract
A key challenge for quantum science and technology is to realize large-scale, precisely controllable, practical systems for non-classical secured communications, metrology and, ultimately, meaningful quantum simulation and computation. Optical frequency combs represent a powerful approach towards this goal, as they provide a very high number of temporal and frequency modes that can result in large-scale quantum systems. The generation and control of quantum optical frequency combs will enable a unique, practical and scalable framework for quantum signal and information processing. Here, we review recent progress on the realization of energy–time entangled optical frequency combs and discuss how photonic integration and the use of fibre-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capability.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Ali-Khan, I., Broadbent, C. J. & Howell, J. C. Large-alphabet quantum key distribution using energy–time entangled bipartite states. Phys. Rev. Lett. 98, 060503 (2007).
Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).
Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009).
Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).
Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).
Carmichael, H. J., Glauber, R. J. & Scully, M. O. Direction of Quantum Optics (Springer, Berlin Heidelberg, 2001).
Wang, D.-S., Stephen, D. T. & Raussendorf, R. Qudit quantum computation on matrix product states with global symmetry. Phys. Rev. A 95, 032312 (2017).
Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).
Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).
O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).
Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).
Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).
Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).
Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).
Pinel, O. et al. Generation and characterization of multimode quantum frequency combs. Phys. Rev. Lett. 108, 083601 (2012).
Reimer, C. et al. Integrated frequency comb source of heralded single photons. Opt. Express 22, 6535–6546 (2014).
Imany, P. et al. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Express 26, 1825–1840 (2018).
Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).
Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).
Pysher, M., Miwa, Y., Shahrokhshahi, R., Bloomer, R. & Pfister, O. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505 (2011).
Yokoyama, S. et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photon. 7, 982–986 (2013).
Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).
Alexander, R. N. et al. One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator. Phys. Rev. A 94, 032327 (2016).
Xie, Z. et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nat. Photon. 9, 536–542 (2015).
Lu, Y. J., Campbell, R. L. & Ou, Z. Y. Mode-locked two-photon states. Phys. Rev. Lett. 91, 163602 (2003).
Chen, M., Menicucci, N. C. & Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014).
Roslund, J., de Araújo, R. M., Jiang, S., Fabre, C. & Treps, N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109–112 (2014).
Gerke, S. et al. Full multipartite entanglement of frequency-comb Gaussian states. Phys. Rev. Lett. 114, 050501 (2015).
Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017).
Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).
Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).
Yoshikawa, J. et al. Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photon. 1, 060801 (2016).
Menicucci, N. C. et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006).
Lloyd, S. & Braunstein, S. L. Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999).
Ohliger, M., Kieling, K. & Eisert, J. Limitations of quantum computing with Gaussian cluster states. Phys. Rev. A 82, 042336 (2010).
Lami, L. et al. Gaussian quantum resource theories. Phys. Rev. A 98, 022335 (2018).
Niset, J., Fiurášek, J. & Cerf, N. J. No-go theorem for Gaussian quantum error correction. Phys. Rev. Lett. 102, 120501 (2009).
Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).
Silverstone, J. W., Bonneau, D., O’Brien, J. L. & Thompson, M. G. Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
Tanzilli, S. et al. On the genesis and evolution of integrated quantum optics. Laser Photon. Rev. 6, 115–143 (2012).
Hochberg, M. & Baehr-Jones, T. Towards fabless silicon photonics. Nat. Photon. 4, 492–494 (2010).
Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).
Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photon. 4, 41–45 (2010).
Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).
Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).
Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2017).
Jaramillo-Villegas, J. A. et al. Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb. Optica 4, 655–658 (2017).
Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019).
Imany, P. et al. Deterministic optical quantum logic with multiple high-dimensional degrees of freedom in a single photon. Preprint at https://arxiv.org/abs/1805.04410 (2018).
Islam, N. T., Lim, C. C. W., Cahall, C., Kim, J. & Gauthier, D. J. Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 3, e1701491 (2017).
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).
Hong, C. K. & Mandel, L. Theory of parametric frequency down conversion of light. Phys. Rev. A 31, 2409–2418 (1985).
Tanzilli, S. et al. PPLN waveguide for quantum communication. Eur. Phys. J. D 18, 155–160 (2002).
Sharping, J. E. et al. Generation of correlated photons in nanoscale silicon waveguides. Opt. Express 14, 12388–12393 (2006).
Grassani, D. et al. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica 2, 88–94 (2015).
Harris, N. C. et al. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys. Rev. X 4, 041047 (2014).
Engin, E. et al. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt. Express 21, 27826–27834 (2013).
Jin, H. et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014).
Guo, X. et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249 (2016).
Kultavewuti, P. et al. Correlated photon pair generation in AlGaAs nanowaveguides via spontaneous four-wave mixing. Opt. Express 24, 3365–3376 (2016).
MacLean, J.-P. W., Donohue, J. M. & Resch, K. J. Direct characterization of ultrafast energy–time entangled photon pairs. Phys. Rev. Lett. 120, 053601 (2018).
Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989).
Law, C. K., Walmsley, I. A. & Eberly, J. H. Continuous frequency entanglement: effective finite Hilbert space and entropy control. Phys. Rev. Lett. 84, 5304–5307 (2000).
Christ, A., Laiho, K., Eckstein, A., Cassemiro, K. N. & Silberhorn, C. Probing multimode squeezing with correlation functions. New J. Phys. 13, 033027 (2011).
Ou, Z. Y. & Lu, Y. J. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett. 83, 2556–2559 (1999).
Förtsch, M. et al. A versatile source of single photons for quantum information processing. Nat. Commun. 4, 1818 (2013).
Mazeas, F. et al. High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip. Opt. Express 24, 28731–28738 (2016).
Roztocki, P. et al. Practical system for the generation of pulsed quantum frequency combs. Opt. Express 25, 18940–18949 (2017).
Reimer, C. et al. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat. Commun. 6, 8236 (2015).
Wang, Q., Zhou, X.-Y. & Guo, G.-C. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources. Sci. Rep. 6, 35394 (2016).
Joshi, C., Farsi, A., Clemmen, S., Ramelow, S. & Gaeta, A. L. Frequency multiplexing for quasi-deterministic heralded single-photon sources. Nat. Commun. 9, 847 (2018).
Grimau Puigibert, M. et al. Heralded single photons based on spectral multiplexing and feed-forward control. Phys. Rev. Lett. 119, 083601 (2017).
Helt, L. G., Yang, Z., Liscidini, M. & Sipe, J. E. Spontaneous four-wave mixing in microring resonators. Opt. Lett. 35, 3006–3008 (2010).
Rambach, M. et al. Hectometer revivals of quantum interference. Phys. Rev. Lett. 121, 093603 (2018).
Olislager, L. et al. Frequency-bin entangled photons. Phys. Rev. A 82, 013804 (2010).
Silverstone, J. W. et al. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 6, 7948 (2015).
Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).
Fang, W.-T. et al. On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement. Opt. Express 26, 12912–12921 (2018).
Pe’er, A., Dayan, B., Friesem, A. A. & Silberberg, Y. Temporal shaping of entangled photons. Phys. Rev. Lett. 94, 073601 (2005).
Zäh, F., Halder, M. & Feurer, T. Amplitude and phase modulation of time–energy entangled two-photon states. Opt. Express 16, 16452–16458 (2008).
Lukens, J. M. et al. Orthogonal spectral coding of entangled photons. Phys. Rev. Lett. 112, 133602 (2014).
Dayan, B., Pe’er, A., Friesem, A. A. & Silberberg, Y. Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett. 94, 043602 (2005).
O’Donnell, K. A. Observations of dispersion cancellation of entangled photon pairs. Phys. Rev. Lett. 106, 063601 (2011).
Lukens, J. M. et al. Generation of biphoton correlation trains through spectral filtering. Opt. Express 22, 9585–9596 (2014).
Lemieux, S. et al. Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1,1) interferometer. Phys. Rev. Lett. 117, 183601 (2016).
Shaked, Y. et al. Lifting the bandwidth limit of optical homodyne measurement with broadband parametric amplification. Nat. Commun. 9, 609 (2018).
Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).
Kwiat, P. G. Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997).
Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
Imany, P., Odele, O. D., Jaramillo-Villegas, J. A., Leaird, D. E. & Weiner, A. M. Characterization of coherent quantum frequency combs using electro-optic phase modulation. Phys. Rev. A 97, 013813 (2018).
Lu, H.-H. et al. Quantum interference and correlation control of frequency-bin qubits. Optica 5, 1455–1460 (2018).
Bernhard, C., Bessire, B., Feurer, T. & Stefanov, A. Shaping frequency-entangled qudits. Phys. Rev. A 88, 032322 (2013).
Binjrajka, V., Chang, C.-C., Emanuel, A. W. R., Leaird, D. E. & Weiner, A. M. Pulse shaping of incoherent light by use of a liquid-crystal modulator array. Opt. Lett. 21, 1756–1758 (1996).
Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
Kolchin, P., Belthangady, C., Du, S., Yin, G. Y. & Harris, S. E. Electro-optic modulation of single photons. Phys. Rev. Lett. 101, 103601 (2008).
Sensarn, S., Yin, G. Y. & Harris, S. E. Observation of nonlocal modulation with entangled photons. Phys. Rev. Lett. 103, 163601 (2009).
Belthangady, C. et al. Hiding single photons with spread spectrum technology. Phys. Rev. Lett. 104, 223601 (2010).
Fan, L. et al. Integrated optomechanical single-photon frequency shifter. Nat. Photon. 10, 766–770 (2016).
Karpiński, M., Jachura, M., Wright, L. J. & Smith, B. J. Bandwidth manipulation of quantum light by an electro-optic time lens. Nat. Photon. 11, 53–57 (2017).
Imany, P. et al. Frequency-domain Hong–Ou–Mandel interference with linear optics. Opt. Lett. 43, 2760–2763 (2018).
Lukens, J. M. & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8–16 (2017).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010).
Lu, H.-H. et al. Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 120, 030502 (2018).
Lu, H.-H. et al. A controlled-NOT gate for frequency-bin qubits. npj Quantum Inf. https://doi.org/10.1038/s41534-019-0137-z (2019).
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116–120 (2005).
Clark, A. S., Shahnia, S., Collins, M. J., Xiong, C. & Eggleton, B. J. High-efficiency frequency conversion in the single-photon regime. Opt. Lett. 38, 947–949 (2013).
Kobayashi, T. et al. Frequency-domain Hong–Ou–Mandel interference. Nat. Photon. 10, 441–444 (2016).
Clemmen, S., Farsi, A., Ramelow, S. & Gaeta, A. L. Ramsey interference with single photons. Phys. Rev. Lett. 117, 223601 (2016).
Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).
Xuan, Y. et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 3, 1171–1180 (2016).
Wang, W.-T. et al. Dissipative Kerr soliton mode-locking and breather states in 19 GHz Si3N4 microresonator. In Conf. Lasers and Electro-Optics Paper JTh2A.160 (OSA, 2018).
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).
Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).
O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).
Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).
Munro, W. J., Azuma, K., Tamaki, K. & Nemoto, K. Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21, 78–90 (2015).
Fontaine, N. K. et al. Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation. Opt. Lett. 33, 1714–1716 (2008).
Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2010).
Karnieli, A. & Arie, A. Frequency domain Stern–Gerlach effect for photonic qubits and qutrits. Optica 5, 1297–1303 (2018).
Acknowledgements
We thank J. Azaña, L. Caspani, P. Roztocki, S. Sciara, Y. Zhang, B. E. Little, S. T. Chu, N. Lingaraju and P. Lougovski for discussions. We acknowledge funding from: Canada Research Chairs (MESI PSR-SIIR); Natural Sciences and Engineering Research Council of Canada (NSERC); H2020 Marie Skłodowska-Curie Actions (MSCA) (656607); ITMO Fellowship and Professorship Program (08-08); 1000 Talents Sichuan Program; Australian Research Council (ARC) (DP150104327); John Templeton Foundation (JTF) number 60478; US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research Quantum Algorithm Teams; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy; National Science Foundation under award number 1839191-ECCS.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kues, M., Reimer, C., Lukens, J.M. et al. Quantum optical microcombs. Nature Photon 13, 170–179 (2019). https://doi.org/10.1038/s41566-019-0363-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-019-0363-0
This article is cited by
-
Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators
Nature Communications (2023)
-
Quantum storage of entangled photons at telecom wavelengths in a crystal
Nature Communications (2023)
-
Quantum decoherence of dark pulses in optical microresonators
Nature Communications (2023)
-
Soliton pulse pairs at multiple colours in normal dispersion microresonators
Nature Photonics (2023)
-
Wavelength-accurate nonlinear conversion through wavenumber selectivity in photonic crystal resonators
Nature Photonics (2023)