Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dual-band infrared imaging using stacked colloidal quantum dot photodiodes


Infrared multispectral imaging is attracting great interest with the increasing demand for sensitive, low-cost and scalable devices that can distinguish coincident spectral information. However, the widespread use of such detectors is still limited by the high cost of epitaxial semiconductors. In contrast, the solution processability and wide spectral tunability of colloidal quantum dots (CQDs) have inspired various inexpensive, high-performance optoelectronic devices. Here, we demonstrate a two-terminal CQD dual-band detector, which provides a bias-switchable spectral response in two distinct bands. A vertical stack of two rectifying junctions in a back-to-back diode configuration is created by engineering a strong and spatially stable doping process. By controlling the bias polarity and magnitude, the detector can be rapidly switched between short-wave infrared and mid-wave infrared at modulation frequencies up to 100 kHz with D* above 1010 jones at cryogenic temperature. The detector performance is illustrated by dual-band infrared imaging and remote temperature monitoring.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and working principle of HgTe CQDs dual-band detectors.
Fig. 2: Photoresponse characterization of HgTe CQD dual-band detectors.
Fig. 3: SWIR/MWIR dual-band imaging.
Fig. 4: Bias-switchable SWIR/MWIR sensing with a HgTe CQDs dual-band detector.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Rogalski, A. Toward third generation HgCdTe infrared detectors. J. Alloys Compd 371, 53–57 (2004).

    Article  Google Scholar 

  2. Rogalski, A., Antoszewski, J. & Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009).

    Article  ADS  Google Scholar 

  3. Ames, C. et al. High-performance SWIR/MWIR and MWIR/MWIR bispectral MCT detectors by AIM. In Infrared Technology and Application s XLIV (eds Fulop, G. F., Hanson, C. M., Norton, P. R., Andresen, B. F. & Miller, J. L.) Vol. 10624, 106240S (SPIE, 2018).

  4. Cervera, C. et al. Low-dark current p-on-n MCT detector in long and very long-wavelength infrared. In Infrared Technology and Applications XLI (eds Andresen, B. F., Fulop, G. F., Hanson, C. M. & Norton, P. R.) Vol. 9451, 945129 (SPIE, 2015).

  5. Sarusi, G. QWIP or other alternative for third generation infrared systems. Infrared Phys. Technol. 44, 439–444 (2003).

    Article  ADS  Google Scholar 

  6. Haddadi, A., Dehzangi, A., Chevallier, R., Adhikary, S. & Razeghi, M. Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAs1−xSbx/AlAs1−xSbx type-II superlattices. Sci. Rep. 7, 3379 (2017).

    Article  ADS  Google Scholar 

  7. Haddadi, A., Chevallier, R., Chen, G., Hoang, A. M. & Razeghi, M. Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1−xSbx type-II superlattices. Appl. Phys. Lett. 106, 011104 (2015).

    Article  ADS  Google Scholar 

  8. Lloyd, J. M. Thermal Imaging Systems (Springer Science & Business Media, New York, NY, 2013).

  9. González, A. et al. Pedestrian detection at day/night time with visible and FIR cameras: a comparison. Sensors 16, 820 (2016).

    Article  Google Scholar 

  10. Liu, Z., Ukida, H., Ramuhalli, P. & Niel, K. Integrated Imaging and Vision Techniques for Industrial Inspection (Springer, New York, NY, 2015).

  11. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article  ADS  Google Scholar 

  12. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    Article  ADS  Google Scholar 

  13. Nikitskiy, I. et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun. 7, 11954 (2016).

    Article  ADS  Google Scholar 

  14. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017).

    Article  ADS  Google Scholar 

  15. Wu, K., Park, Y.-S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).

    Article  ADS  Google Scholar 

  16. Yuan, F. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018).

    Article  ADS  Google Scholar 

  17. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010).

    Article  ADS  Google Scholar 

  18. Kovalenko, M. V. Opportunities and challenges for quantum dot photovoltaics. Nat. Nanotechnol. 10, 994–997 (2015).

    Article  ADS  Google Scholar 

  19. Wang, X. et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat. Photon. 5, 480–484 (2011).

    Article  ADS  Google Scholar 

  20. Saran, R. & Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photon. 10, 81–92 (2016).

    Article  ADS  Google Scholar 

  21. Böberl, M., Kovalenko, M. V., Gamerith, S., List, E. J. W. & Heiss, W. Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths. Adv. Mater. 19, 3574–3578 (2007).

    Article  Google Scholar 

  22. Jagtap, A. et al. Short wave infrared devices based on hgte nanocrystals with air stable performances. J. Phys. Chem. C 122, 14979–14985 (2018).

    Article  Google Scholar 

  23. Ackerman, M. M., Tang, X. & Guyot-Sionnest, P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 12, 7264–7271 (2018).

    Article  Google Scholar 

  24. Tang, X., Ackerman, M. M. & Guyot-Sionnest, P. Thermal imaging with plasmon resonance enhanced hgte colloidal quantum dot photovoltaic devices. ACS Nano 12, 7362–7370 (2018).

    Article  Google Scholar 

  25. Keuleyan, S., Lhuillier, E. & Guyot-Sionnest, P. Synthesis of colloidal hgte quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 133, 16422–16424 (2011).

    Article  Google Scholar 

  26. Keuleyan, S., Lhuillier, E., Brajuskovic, V. & Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photon. 5, 489–493 (2011).

    Article  ADS  Google Scholar 

  27. Guyot-Sionnest, P. & Roberts, J. A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots. Appl. Phys. Lett. 107, 253104 (2015).

    Article  ADS  Google Scholar 

  28. Keuleyan, S. E., Guyot-Sionnest, P., Delerue, C. & Allan, G. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano 8, 8676–8682 (2014).

    Article  Google Scholar 

  29. Tang, X., Wu, Gfu & Lai, K. W. C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared. J. Mater. Chem. C 5, 362–369 (2017).

    Article  Google Scholar 

  30. Goubet, N. et al. Terahertz HgTe nanocrystals: beyond confinement. J. Am. Chem. Soc. 140, 5033–5036 (2018).

    Article  Google Scholar 

  31. Buurma, C. et al. MWIR imaging with low cost colloidal quantum dot films. In Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications (eds Razeghi, M., Temple, D. S. & Brown, G. J.) Vol. 9933, 993303 (SPIE, 2016).

  32. Lhuillier, E., Keuleyan, S. & Guyot-Sionnest, P. Optical properties of HgTe colloidal quantum dots. Nanotechnology 23, 175705 (2012).

    Article  ADS  Google Scholar 

  33. Liu, H., Keuleyan, S. & Guyot-Sionnest, P. n- and p-type HgTe quantum dot films. J. Phys. Chem. C 116, 1344–1349 (2012).

    Article  Google Scholar 

  34. Anderson, R. L. Germanium-gallium arsenide heterojunctions. IBM J. Res. Dev. 4, 283–287 (1960).

    Article  Google Scholar 

  35. Hirahara, T. et al. Anomalous transport in an n-type topological insulator ultrathin Bi2Se3 film. Phys. Rev. B 82, 155309 (2010).

    Article  ADS  Google Scholar 

  36. Fan, X. A. et al. Bi2Te3 hexagonal nanoplates and thermoelectric properties of n-type Bi2Te3 nanocomposites. J. Phys. D 40, 5975–5979 (2007).

    Article  ADS  Google Scholar 

  37. Scheele, M. et al. Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv. Funct. Mater. 19, 3476–3483 (2009).

    Article  Google Scholar 

  38. Moreno-García, H., Nair, M. T. S. & Nair, P. K. Chemically deposited lead sulfide and bismuth sulfide thin films and Bi2S3/PbS solar cells. Thin Solid Films 519, 2287–2295 (2011).

    Article  ADS  Google Scholar 

  39. Rath, A. K., Bernechea, M., Martinez, L. & Konstantatos, G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 23, 3712–3717 (2011).

    Article  Google Scholar 

  40. Guyot-Sionnest, P. Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 3, 1169–1175 (2012).

    Article  Google Scholar 

  41. Tang, X., Tang, X. & Lai, K. W. C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films. ACS Photon. 3, 2396–2404 (2016).

    Article  Google Scholar 

  42. Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Rep. Progr. Phys. 68, 2267–2336 (2005).

    Article  ADS  Google Scholar 

Download references


This work was supported by ARO W911NF-18-1-0207 and partially supported by the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation under award no. DMR1420709. This work also made use of the Pritzker Nanofabrication Facility of the Institute for Molecular Engineering at the University of Chicago, which receives support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), a node of the National Science Foundation’s National Nanotechnology Coordinated Infrastructure.

Author information

Authors and Affiliations



X.T. and M.M.A. conceived and designed the experiments. X.T. fabricated the samples and performed data analysis. M.M.A. synthesized and characterized the colloidal materials. M.C. performed field-effect transistor measurements. All authors contributed to discussions of the manuscript.

Corresponding author

Correspondence to Philippe Guyot-Sionnest.

Ethics declarations

Competing interests

P.G.-S. is named as an inventor in US patent application 15/062,418, filed 8 September 2016.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Device information, measurement details and other supplementary information.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Ackerman, M.M., Chen, M. et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 13, 277–282 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing