Programmable plasmonic phase modulation of free-space wavefronts at gigahertz rates

Abstract

Space-variant control of optical wavefronts is important for many applications in photonics, such as the generation of structured light beams, and is achieved with spatial light modulators. Commercial devices, at present, are based on liquid-crystal and digital micromirror technologies and are typically limited to kilohertz switching speeds. To realize significantly higher operating speeds, new technologies and approaches are necessary. Here we demonstrate two-dimensional control of free-space optical fields at a wavelength of 1,550 nm at a 1 GHz modulation speed using a programmable plasmonic phase modulator based on near-field interactions between surface plasmons and materials with an electrooptic response. High χ(2) and χ(3) dielectric thin films of either aluminium nitride or silicon-rich silicon nitride are used as an active modulation layer in a surface plasmon resonance configuration to realize programmable space-variant control of optical wavefronts in a 4 × 4 pixel array at high speed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PPPM overview.
Fig. 2: Experimental set-up.
Fig. 3: Dynamic characterization.
Fig. 4: Space-variant modulation.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Dudley, D., Duncan, W. M. & Slaughter, J. Emerging digital micromirror device (DMD) applications. Proc. SPIE 4985, 14–26 (2003).

    ADS  Article  Google Scholar 

  2. 2.

    Henderson, C. J., Leyva, D. G. & Wilkinson, T. D. Free space adaptive optical interconnect at 1.25 Gb/s, with beam steering using a ferroelectric liquid-crystal SLM. J. Lightwave Technol. 24, 1989–1997 (2006).

    ADS  Article  Google Scholar 

  3. 3.

    Shrauger, V. & Warde, C. Development of a high-speed high-fillfactor phase-only spatial light modulator. Proc. SPIE 4291, 101–108 (2001).

    ADS  Article  Google Scholar 

  4. 4.

    Yang, W. et al. High speed optical phased array using high contrast grating all-pass filters. Opt. Express 22, 20038–20044 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Sun, T. et al. Surface-normal electro-optic spatial light modulator using graphene integrated on a high-contrast grating resonator. Opt. Express 24, 26035–26043 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Yu, N. System, method and computer-accessible medium for depth of field imaging for three-dimensional sensing utilizing a spatial light modulator microscope arrangement. US patent application 14/763,925 (2015).

  7. 7.

    Ahearn, J. S. et al. Multiple quantum well (MQW) spatial light modulators (SLMs) for optical data processing and beam steering. Proc. SPIE 4457, 43–54 (2001).

    ADS  Article  Google Scholar 

  8. 8.

    Lucente, M., 2011. The first 20 years of holographic video—and the next 20. In Proc. 2nd Annual International Conference on Stereoscopic 3D for Media and Entertainment 21–23 (SMPTE, 2011).

  9. 9.

    Haffner, C. et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photon. 9, 525–528 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Hössbacher, C. et al. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt. Express 25, 1762–1768 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005).

    ADS  Article  Google Scholar 

  12. 12.

    Tetz, K., Rokitski, R., Nezhad, M. & Fainman, Y. Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating. Appl. Phys. Lett 86, 111110 (2005).

    ADS  Article  Google Scholar 

  13. 13.

    Rokitski, R., Tetz, K. A. & Fainman, Y. Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space–time complex amplitude characterization. Phys. Rev. Lett. 95, 177401 (2005).

    ADS  Article  Google Scholar 

  14. 14.

    Huang, Y. H., Ho, H. P., Wu, S. Y. & Kong, S. K. Detecting phase shifts in surface plasmon resonance: a review. Adv. Opt. Technol. 2012, 471957 (2012).

    Article  Google Scholar 

  15. 15.

    Nakkach, M., Duval, A., Ea-Kim, B., Moreau, J. & Canva, M. Angulo-spectral surface plasmon resonance imaging of nanofabricated grating surfaces. Opt. Lett. 35, 2209–2211 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Nikitin, P. I. et al. Surface plasmon resonance interferometry for micro-array biosensing. Sens. Actuat. A 85, 189–193 (2000).

    Article  Google Scholar 

  17. 17.

    Dong, W. et al. Improved polarization contrast method for surface plasmon resonance imaging sensors by inert background gold film extinction. Opt. Commun. 346, 1–9 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Piliarik, M., Vaisocherová, H. & Homola, J. A new surface plasmon resonance sensor for high-throughput screening applications. Biosens. Bioelectron. 20, 2104–2110 (2005).

    Article  Google Scholar 

  19. 19.

    Piliarik, M., Katainen, J. & Homola, J. Novel polarization control for high-throughput surface plasmon resonance sensors. Opt. Sens. Technol. Appl. 6585, 658515 (2007).

    Article  Google Scholar 

  20. 20.

    Homola, J. & Yee, S. S. Novel polarization control scheme for spectral surface plasmon resonance sensors. Sens. Actuat. B 51, 331–339 (1998).

    Article  Google Scholar 

  21. 21.

    Huang, Y. H., Ho, H. P., Kong, S. K. & Kabashin, A. V. Phase‐sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications. Ann. Phys. 524, 637–662 (2012).

    Article  Google Scholar 

  22. 22.

    Moirangthem, R. S., Chang, Y. C., Hsu, S. H. & Wei, P. K. Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction. Biosens. Bioelectron. 25, 2633–2638 (2010).

    Article  Google Scholar 

  23. 23.

    Liu, C., Liu, Q. & Hu, X. SPR phase detection for measuring the thickness of thin metal films. Opt. Express 22, 7574–7580 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Yeatman, E. M. & Caldwell, M. E. Spatial light modulation using surface plasmon resonance. Appl. Phys. Lett. 55, 613–615 (1989).

    ADS  Article  Google Scholar 

  25. 25.

    Kogan, P., Apter, B., Baal-Zedaka, I. & Efron, U. Resolution improvement of surface plasmon-enhanced, liquid crystal spatial light modulator: simulation studies. Opt. Commun. 281, 4788–4792 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, New York, 2006).

  27. 27.

    Xiong, C., Pernice, W. H. & Tang, H. X. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562–3568 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Lin, H. H. et al. 2017. Enhanced effective second-order nonlinearities in Si-rich SiNx thin films. In 2017 Conference on Lasers and Electro-Optics (CLEO) SM1M.6 (Optical Society of America, 2017).

  29. 29.

    Shen, S., Liu, T. & Guo, J. Optical phase-shift detection of surface plasmon resonance. Appl. Opt. 37, 1747–1751 (1998).

    ADS  Article  Google Scholar 

  30. 30.

    Kurihara, K. & Suzuki, K. Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory. Anal. Chem. 74, 696–701 (2002).

    Article  Google Scholar 

  31. 31.

    Raether, H. in Surface Plasmons on Smooth and Rough Surfaces and on Gratings 91–116 (Springer, Berlin, 1988).

  32. 32.

    Deng, S., Wang, P. & Yu, X. Phase-sensitive surface plasmon resonance sensors: recent progress and future prospects. Sensors 17, 2819 (2017).

    Article  Google Scholar 

  33. 33.

    An, Z., Men, C., Xu, Z., Chu, P. K. & Lin, C. Electrical properties of AlN thin films prepared by ion beam enhanced deposition. Surf. Coatings Technol. 196, 130–134 (2005).

    Article  Google Scholar 

  34. 34.

    Rauthan, C. M. S. & Srivastava, J. K. Electrical breakdown voltage characteristics of buried silicon nitride layers and their correlation to defects in the nitride layer. Mater. Lett. 9, 252–258 (1990).

    Article  Google Scholar 

  35. 35.

    Yota, J. Effects of deposition method of PECVD silicon nitride as MIM capacitor dielectric for GaAs HBTtechnology. ECS Trans. 35, 229–240 (2011).

    Article  Google Scholar 

  36. 36.

    McManamon, P. F. et al. A review of phased array steering for narrow-band electrooptical systems. Proc. IEEE 97, 1078–1096 (2009).

    Article  Google Scholar 

  37. 37.

    Swanson, G. J. 1989. Binary Optics Technology: The Theory and Design of Multi-level Diffractive Optical Elements Report No. TR-854 (Massachusetts Institute of Technology Lincoln Laboratory, Lexington, 1989).

  38. 38.

    Broomfield, S. E., Neil, M. A. A., Paige, E. G. S. & Yang, G. G. Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM. Electron. Lett. 28, 26–28 (1992).

    Article  Google Scholar 

  39. 39.

    Weigel, P. O. et al. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics. Sci. Rep. 6, 22301 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Chang, L. et al. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 42, 803–806 (2017).

    ADS  Article  Google Scholar 

  41. 41.

    Heck, M. J. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6, 93–107 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA), DARPA NLM, DARPA MOABB, the Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI), the National Science Foundation (NSF) grants DMR-1707641, CBET-1704085, ECCS-1405234, ECCS-1644647, CCF-1640227 and ECCS-1507146, the NSF ERC CIAN, the Semiconductor Research Corporation (SRC), the NSF’s NNCI San Diego Nanotechnology Infrastructure (SDNI), the Chip-Scale Photonics Testing Facility (CSPTF), Nano3, the Army Research Office (ARO) and the Cymer Corporation.

Author information

Affiliations

Authors

Contributions

A.S. designed and characterized the PPPM and experimental set-ups, with input from A.E. and Y.F. Device fabrication was performed by A.S. and F.V. Design feedback for high speed characterization and performance analysis was provided by S.P. A.S., A.E.A. and Y.F. wrote the manuscript with input from S.P. and F.V. Y.F. supervised the project.

Corresponding author

Correspondence to Alexei Smolyaninov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Detailed analysis of the device’s wavelength and angular response.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smolyaninov, A., El Amili, A., Vallini, F. et al. Programmable plasmonic phase modulation of free-space wavefronts at gigahertz rates. Nat. Photonics 13, 431–435 (2019). https://doi.org/10.1038/s41566-019-0360-3

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing