Review Article | Published:

Photonic-chip-based frequency combs

Nature Photonicsvolume 13pages158169 (2019) | Download Citation

Abstract

Recent developments in chip-based nonlinear photonics offer the tantalizing prospect of realizing many applications that can use optical frequency comb devices that have form factors smaller than 1 cm3 and that require less than 1 W of power. A key feature that enables such technology is the tight confinement of light due to the high refractive index contrast between the core and the cladding. This simultaneously produces high optical nonlinearities and allows for dispersion engineering to realize and phase match parametric nonlinear processes with laser-pointer powers across large spectral bandwidths. In this Review, we summarize the developments, applications and underlying physics of optical frequency comb generation in photonic-chip waveguides via supercontinuum generation and in microresonators via Kerr-comb generation that enable comb technology from the near-ultraviolet to the mid-infrared regime.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Cundiff, S. T. & Ye, J. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

  2. 2.

    Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

  3. 3.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

  4. 4.

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

  5. 5.

    Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

  6. 6.

    Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

  7. 7.

    Grelu, P. (ed) Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers (Wiley, Berlin, 2015).

  8. 8.

    Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quant. Electron. 6, 1173–1185 (2000).

  9. 9.

    Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

  10. 10.

    Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

  11. 11.

    Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

  12. 12.

    Lettieri, S., Di Finizio, S., Maddalena, P., Ballarini, V. & Giorgis, F. Second-harmonic generation in amorphous silicon nitride microcavities. Appl. Phys. Lett. 81, 4706–4708 (2002).

  13. 13.

    Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).

  14. 14.

    Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

  15. 15.

    Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995).

  16. 16.

    Brabec, T. & Krausz, F. Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 3283–3285 (1997).

  17. 17.

    Skryabin, D. V. & Gorbach, A. V. Colloquium: looking at a soliton through the prism of optical supercontinuum. Rev. Mod. Phys. 82, 1287–1299 (2010).

  18. 18.

    Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

  19. 19.

    Hsieh, I.-W. et al. Supercontinuum generation in silicon photonic wires. Opt. Express 15, 15242–15249 (2007).

  20. 20.

    Liang, T. K. & Tsang, H. K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 2745–2747 (2004).

  21. 21.

    Kuyken, B. et al. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Opt. Express 19, 20172–20181 (2011).

  22. 22.

    Lau, R. K. W. et al. Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. Opt. Lett. 39, 4518–4521 (2014).

  23. 23.

    Kuyken, B. et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 6, 6310 (2015).

  24. 24.

    Singh, N. et al. Mid-infrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica 2, 797–802 (2015).

  25. 25.

    Kou, R. et al. Mid-IR broadband supercontinuum generation from a suspended silicon waveguide. Opt. Lett. 43, 1387–1390 (2018).

  26. 26.

    Safioui, J. et al. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths. Opt. Express 22, 3089–3097 (2014).

  27. 27.

    Shen, L. et al. Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. Opt. Lett. 39, 5721–5724 (2014).

  28. 28.

    Dave, U. D. et al. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source. Opt. Express 21, 32032–32039 (2013).

  29. 29.

    Leo, F., Safioui, J., Kuyken, B., Roelkens, G. & Gorza, S.-P. Generation of coherent supercontinuum in a-Si:H waveguides: experiment and modeling based on measured dispersion profile. Opt. Express 22, 28997–29007 (2014).

  30. 30.

    Halir, R. et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett. 37, 1685–1687 (2012).

  31. 31.

    Epping, J. P. et al. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. Opt. Express 23, 19596–19604 (2015).

  32. 32.

    Zhao, H. et al. Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 2177–2180 (2015).

  33. 33.

    Wang, T. et al. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser Photon. Rev. 9, 498–506 (2015).

  34. 34.

    Liu, X. et al. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide. Opt. Lett. 41, 2719–2722 (2016).

  35. 35.

    Johnson, A. R. et al. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 5117–5120 (2015).

  36. 36.

    Mayer, A. S. et al. Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides. Opt. Express 23, 15440–15451 (2015).

  37. 37.

    Klenner, A. et al. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. Opt. Express 24, 11043–11053 (2016).

  38. 38.

    Okawachi, Y. et al. Coherent, directional supercontinuum generation. Opt. Lett. 42, 4466–4469 (2017).

  39. 39.

    Guo, H. et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photon. 12, 330–335 (2018).

  40. 40.

    Carlson, D. R. et al. Photonic-chip supercontinuum with tailored spectra for counting optical frequencies. Phys. Rev. Appl. 8, 014027 (2017).

  41. 41.

    Carlson, D. R. et al. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett. 42, 2314–2317 (2017).

  42. 42.

    Okawachi, Y. et al. Carrier envelope offset detection via simultaneous supercontinuum and second harmonic generation in a silicon-nitride waveguide. Opt. Lett. 43, 4627–4630 (2018).

  43. 43.

    Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

  44. 44.

    Gai, X., Madden, S., Choi, D.-Y., Bulla, D. & Luther-Davies, B. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm. Opt. Express 18, 18866–18874 (2010).

  45. 45.

    Karim, M. R., Rahman, B. M. A. & Agrawal, G. P. Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide. Opt. Express 23, 6903–6914 (2015).

  46. 46.

    Herzog, A. et al. Chalcogenide waveguides on a sapphire substrate for mid-IR applications. Opt. Lett. 39, 2522–2525 (2014).

  47. 47.

    Yu, Y. et al. Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Opt. Lett. 41, 958–961 (2016).

  48. 48.

    Lamont, M. R. E., Luther-Davies, B., Choi, D.-Y., Madden, S. & Eggleton, B. J. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide. Opt. Express 16, 14938–14944 (2008).

  49. 49.

    Tremblay, J.-E., Malinowski, M., Richardson, K. A., Fathpour, S. & Wu, M. C. Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides. Opt. Express 26, 21358–21363 (2018).

  50. 50.

    Hammani, K. et al. Octave spanning supercontinuum in titanium dioxide waveguides. Appl. Sci. 8, 543 (2018).

  51. 51.

    Dave, U. D. et al. Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate. Opt. Lett. 40, 3584–3587 (2015).

  52. 52.

    Ettabib, M. A. et al. Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide. Opt. Lett. 40, 4118–4121 (2015).

  53. 53.

    Sinobad, M. et al. Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides. Optica 5, 360–366 (2018).

  54. 54.

    Yuan, J. et al. Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide. J. Lightwave Technol. 35, 2994–3002 (2017).

  55. 55.

    Hickstein, D. D. et al. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Phys. Rev. Appl. 8, 014025 (2017).

  56. 56.

    Phillips, C. R. et al. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. Opt. Lett. 36, 3912–3914 (2011).

  57. 57.

    Oh, D. Y. Supercontinuum generation in an on-chip silica waveguide. Opt. Lett. 39, 1046–1048 (2014).

  58. 58.

    Oh, D. Y. et al. Coherent ultra-violet to near-infrared generation in silica ridge waveguides. Nat. Commun. 8, 13922 (2016).

  59. 59.

    Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. https://doi.org/10.1038/s41566-018-0347-5 (2019).

  60. 60.

    Hu, J. et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express 15, 2307–2314 (2007).

  61. 61.

    Hu, H. et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photon. 12, 469–473 (2018).

  62. 62.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

  63. 63.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  64. 64.

    Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).

  65. 65.

    Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

  66. 66.

    Bao, C. et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett. 117, 163901 (2016).

  67. 67.

    Yu, M. Breather soliton dynamics in microresonators. Nat Commun. 8, 14569 (2017).

  68. 68.

    Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. L. & Kippenberg, T. J. Breathing dissipative solitons in optical microresonators. Nat Commun. 8, 736 (2017).

  69. 69.

    Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

  70. 70.

    Matsko, A. B. et al. Mode-locked Kerr frequency combs. Opt. Lett. 36, 2845–2847 (2011).

  71. 71.

    Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

  72. 72.

    Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt. Lett. 38, 37–39 (2013).

  73. 73.

    Lamont, M. R. E., Okawachi, Y. & Gaeta, A. L. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt. Lett. 38, 3478–3481 (2013).

  74. 74.

    Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica 3, 854–860 (2016).

  75. 75.

    Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012).

  76. 76.

    Skryabin, D. V. & Kartashov, Y. V. Self-locking of the frequency comb repetition rate in microring resonators with higher order dispersions. Opt. Express 25, 27442–27451 (2017).

  77. 77.

    Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

  78. 78.

    Okawachi, Y. et al. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Opt. Lett. 39, 3535–3538 (2014).

  79. 79.

    Bao, C. et al. High-order dispersion in Kerr comb oscillators. J. Opt. Soc. Am. B 34, 715–725 (2017).

  80. 80.

    Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

  81. 81.

    Grudinin, I. S., Yu, N. & Maleki, L. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

  82. 82.

    Levy, J. S. et al. CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

  83. 83.

    Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photon. 4, 41–45 (2010).

  84. 84.

    Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2013).

  85. 85.

    Foster, M. A. et al. Silicon-based monolithic optical frequency comb source. Opt. Express 19, 14233–14239 (2011).

  86. 86.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

  87. 87.

    Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).

  88. 88.

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Imaging soliton dynamics in optical microcavities. Nat. Commun. 9, 3565 (2018).

  89. 89.

    Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

  90. 90.

    Brasch, V., Geiselmann, M., Pfeiffer, M. H. P. & Kippenberg, T. J. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24, 29312–29320 (2016).

  91. 91.

    Cole, D. C. et al. Kerr-microresonator solitons from a chirped background. Optica 5, 1304–1310 (2018).

  92. 92.

    Dutt, A. et al. On-chip dual comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

  93. 93.

    Jang, J. K. et al. Synchronization of coupled optical microresonators. Nat. Photon. 12, 688–693 (2018).

  94. 94.

    Liang, W. et al. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett. 39, 2920–2923 (2014).

  95. 95.

    Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

  96. 96.

    Xue, X. et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev. 9, L23–L28 (2015).

  97. 97.

    Parra-Rivas, P., Gomila, D., Knobloch, E., Coen, S. & Gelens, L. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. Opt. Lett. 41, 2402–2405 (2016).

  98. 98.

    Fülöp, A. et al. Long-haul coherent communications using microresonator-based frequency combs. Opt. Express 25, 26678–26688 (2017).

  99. 99.

    Jang, J. K. et al. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion. Opt. Express 24, 28794–28803 (2016).

  100. 100.

    Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

  101. 101.

    Ramelow, S. et al. Strong polarization mode coupling in microresonators. Opt. Lett. 39, 5134–5137 (2014).

  102. 102.

    Chembo, Y. K., Grudinin, I. S. & Yu, N. Spatiotemporal dynamics of Kerr-Raman optical frequency combs. Phys. Rev. A 92, 043818 (2015).

  103. 103.

    Milián, C., Gorbach, A. V., Taki, M., Yulin, A. V. & Skryabin, D. V. Solitons and frequency combs in silica microring resonators: interplay of the Raman and higher-order dispersion effects. Phys. Rev. A 92, 033851 (2015).

  104. 104.

    Karpov, M. et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett. 116, 103902 (2016).

  105. 105.

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Opt. Lett. 41, 3419–3422 (2016).

  106. 106.

    Wang, Y., Anderson, M., Coen, S., Murdoch, S. G. & Erkintalo, M. Stimulated Raman scattering imposes fundamental limits to the duration and bandwidth of temporal cavity solitons. Phys. Rev. Lett. 120, 053902 (2018).

  107. 107.

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Stokes solitons in optical microcavities. Nat. Phys. 13, 53–57 (2017).

  108. 108.

    Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation. Opt. Lett. 42, 2786–2789 (2017).

  109. 109.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

  110. 110.

    Xuan, Y. et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 3, 1171–1180 (2016).

  111. 111.

    Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

  112. 112.

    Pfeiffer, M. H. P. et al. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica 5, 884–892 (2018).

  113. 113.

    Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

  114. 114.

    Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

  115. 115.

    Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

  116. 116.

    Liu, J. et al. Ultralow-power chip-based soliton microcombs for photonic integration. Optica 5, 1347–1353 (2018).

  117. 117.

    Luke, K., Okawachi, Y., Lamont, M., Gaeta, A. & Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40, 4823–4826 (2015).

  118. 118.

    Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

  119. 119.

    Yang, K. Y. et al. Broadband dispersion-engineered microresonator on a chip. Nat. Photon. 10, 316–320 (2016).

  120. 120.

    Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

  121. 121.

    Suh, M.-G. & Vahala, K. Gigahertz-repetition-rate soliton microcombs. Optica 5, 65–66 (2018).

  122. 122.

    Lee, S. H. et al. Towards visible soliton microcomb generation. Nat. Commun. 8, 1295 (2017).

  123. 123.

    Lau, R. K. W., Lamont, M. R. E., Okawachi, Y. & Gaeta, A. L. Effects of multiphoton absorption on parametric comb generation in silicon microresonators. Opt. Lett. 40, 2778–2781 (2015).

  124. 124.

    Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

  125. 125.

    Hansson, T., Modotto, D. & Wabnitz, S. Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt. Lett. 39, 6747–6750 (2014).

  126. 126.

    Hausmann, B. J. M., Bulu, I., Venkataraman, V., Deotare, P. & Lončar, M. Diamond nonlinear photonics. Nat. Photon. 8, 369–374 (2014).

  127. 127.

    Jung, H., Stoll, R., Guo, X., Fischer, D. & Tang, H. X. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 1, 396–399 (2014).

  128. 128.

    Gong, Z. et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett. 43, 4366–4369 (2018).

  129. 129.

    Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).

  130. 130.

    Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Preprint at https://arxiv.org/abs/1808.03554 (2018).

  131. 131.

    Wang, C. et al. On-chip Kerr frequency comb generation in lithium niobate microresonators. In Conf. Lasers Electro-Optics, OSA Technical Digest (online) Paper SW4M.3 (OSA, 2018).

  132. 132.

    Guo, X. et al. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl. 10, 014012 (2018).

  133. 133.

    Jung, H., Fong, K. Y., Xiong, C. & Tang, H. X. Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators. Opt. Lett. 39, 84–87 (2014).

  134. 134.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

  135. 135.

    Pavlov, N. G. et al. Soliton dual frequency combs in crystalline microresonators. Opt. Lett. 42, 514–517 (2017).

  136. 136.

    Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).

  137. 137.

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).

  138. 138.

    Joshi, C. et al. Counter-rotating cavity solitons in a silicon nitride microresonator. Opt. Lett. 43, 547–550 (2018).

  139. 139.

    Lucas, E. et al. Spatial multiplexing of soliton microcombs. Nat. Photon. 12, 699–705 (2018).

  140. 140.

    Yu, M. et al. Gas-phase microresonator-based comb spectroscopy without an external pump laser. ACS Photon. 5, 2780–2785 (2018).

  141. 141.

    Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

  142. 142.

    Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).

  143. 143.

    Levy, J. S. et al. High-performance silicon-nitride-based multiple-wavelength source. Photon. Technol. Lett. 24, 1375–1377 (2012).

  144. 144.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

  145. 145.

    Bao, C. et al. Demonstration of optical multicasting using Kerr frequency comb lines. Opt. Lett. 41, 3876–3879 (2016).

  146. 146.

    Willner, A. N. et al. Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb. Opt. Lett. 43, 5563–5566 (2018).

  147. 147.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

  148. 148.

    Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

  149. 149.

    Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

  150. 150.

    Wu, J. Y. et al. RF photonics: an optical microcombs’ perspective.IEEE J. Sel. Top. Quantum Electron. 24, 6101020 (2018).

  151. 151.

    Xue, X. et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J. Light. Technol. 32, 3557–3565 (2014).

  152. 152.

    Nguyen, T. G. et al. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt. Express 23, 22087–22097 (2015).

  153. 153.

    Xu, X. et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photon. 2, 096104 (2017).

  154. 154.

    Xu, X. et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt. Express 26, 2569–2583 (2018).

  155. 155.

    Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photon. 5, 770–776 (2011).

  156. 156.

    Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

  157. 157.

    Volet, N. et al. Micro‐resonator soliton generated directly with a diode laser. Laser Photon. Rev. 12, 1700307 (2018).

  158. 158.

    Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. https://doi.org/10.1038/s41467-019-08498-2 (2019).

  159. 159.

    Uvin, S. et al. Narrow line width frequency comb source based on an injection-locked III-V-on-silicon mode-locked laser. Opt. Express 24, 5277–5286 (2016).

  160. 160.

    Guzmán, R., Gordon, C., Orbe, L. & Carpintero, G. 1-GHz InP on-chip monolithic extended cavity colliding-pulse mode-locked laser. Opt. Lett. 42, 2318–2321 (2017).

  161. 161.

    Liu, S. et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron. Lett. 54, 432–433 (2018).

Download references

Acknowledgements

We are grateful to Y. Okawachi and M. Yu for help in preparing Table 1 and Figs. 1, 2 and 6. This work was supported by AFOSR program award number FA9550-15-1-0303 and the ARPA-E PINE program.

Author information

Affiliations

  1. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA

    • Alexander L. Gaeta
  2. Department of Electrical Engineering, Columbia University, New York, NY, USA

    • Michal Lipson
  3. École Polytechnique Fédérale de Lausanne (EPFL), Institute of Physics, Lausanne, Switzerland

    • Tobias J. Kippenberg

Authors

  1. Search for Alexander L. Gaeta in:

  2. Search for Michal Lipson in:

  3. Search for Tobias J. Kippenberg in:

Contributions

All authors discussed and edited the content in the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Alexander L. Gaeta.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41566-019-0358-x