Photonic-chip-based frequency combs

Abstract

Recent developments in chip-based nonlinear photonics offer the tantalizing prospect of realizing many applications that can use optical frequency comb devices that have form factors smaller than 1 cm3 and that require less than 1 W of power. A key feature that enables such technology is the tight confinement of light due to the high refractive index contrast between the core and the cladding. This simultaneously produces high optical nonlinearities and allows for dispersion engineering to realize and phase match parametric nonlinear processes with laser-pointer powers across large spectral bandwidths. In this Review, we summarize the developments, applications and underlying physics of optical frequency comb generation in photonic-chip waveguides via supercontinuum generation and in microresonators via Kerr-comb generation that enable comb technology from the near-ultraviolet to the mid-infrared regime.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chip-based frequency comb generation.
Fig. 2: Dispersion engineering for comb generation.
Fig. 3: Coherent comb SCG spectra generated in chip-based platforms with DW generation via dispersion engineering.
Fig. 4: Numerical simulation of soliton formation in a silicon microresonator.
Fig. 5: Experimental observation of soliton steps and generation of multiple soliton states.
Fig. 6: Integrated frequency comb source and potential implementations.

References

  1. 1.

    Cundiff, S. T. & Ye, J. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    ADS  Google Scholar 

  2. 2.

    Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

    ADS  Google Scholar 

  3. 3.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Google Scholar 

  4. 4.

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    ADS  Google Scholar 

  5. 5.

    Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    ADS  Google Scholar 

  6. 6.

    Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    ADS  Google Scholar 

  7. 7.

    Grelu, P. (ed) Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers (Wiley, Berlin, 2015).

    Google Scholar 

  8. 8.

    Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quant. Electron. 6, 1173–1185 (2000).

    ADS  Google Scholar 

  9. 9.

    Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    ADS  Google Scholar 

  10. 10.

    Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Google Scholar 

  11. 11.

    Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    ADS  Google Scholar 

  12. 12.

    Lettieri, S., Di Finizio, S., Maddalena, P., Ballarini, V. & Giorgis, F. Second-harmonic generation in amorphous silicon nitride microcavities. Appl. Phys. Lett. 81, 4706–4708 (2002).

    ADS  Google Scholar 

  13. 13.

    Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).

    ADS  Google Scholar 

  14. 14.

    Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

    ADS  Google Scholar 

  15. 15.

    Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995).

    ADS  Google Scholar 

  16. 16.

    Brabec, T. & Krausz, F. Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 3283–3285 (1997).

    ADS  Google Scholar 

  17. 17.

    Skryabin, D. V. & Gorbach, A. V. Colloquium: looking at a soliton through the prism of optical supercontinuum. Rev. Mod. Phys. 82, 1287–1299 (2010).

    ADS  Google Scholar 

  18. 18.

    Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

    Google Scholar 

  19. 19.

    Hsieh, I.-W. et al. Supercontinuum generation in silicon photonic wires. Opt. Express 15, 15242–15249 (2007).

    ADS  Google Scholar 

  20. 20.

    Liang, T. K. & Tsang, H. K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 2745–2747 (2004).

    ADS  Google Scholar 

  21. 21.

    Kuyken, B. et al. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Opt. Express 19, 20172–20181 (2011).

    ADS  Google Scholar 

  22. 22.

    Lau, R. K. W. et al. Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. Opt. Lett. 39, 4518–4521 (2014).

    ADS  Google Scholar 

  23. 23.

    Kuyken, B. et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 6, 6310 (2015).

    Google Scholar 

  24. 24.

    Singh, N. et al. Mid-infrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica 2, 797–802 (2015).

    Google Scholar 

  25. 25.

    Kou, R. et al. Mid-IR broadband supercontinuum generation from a suspended silicon waveguide. Opt. Lett. 43, 1387–1390 (2018).

    ADS  Google Scholar 

  26. 26.

    Safioui, J. et al. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths. Opt. Express 22, 3089–3097 (2014).

    ADS  Google Scholar 

  27. 27.

    Shen, L. et al. Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. Opt. Lett. 39, 5721–5724 (2014).

    ADS  Google Scholar 

  28. 28.

    Dave, U. D. et al. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source. Opt. Express 21, 32032–32039 (2013).

    ADS  Google Scholar 

  29. 29.

    Leo, F., Safioui, J., Kuyken, B., Roelkens, G. & Gorza, S.-P. Generation of coherent supercontinuum in a-Si:H waveguides: experiment and modeling based on measured dispersion profile. Opt. Express 22, 28997–29007 (2014).

    ADS  Google Scholar 

  30. 30.

    Halir, R. et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett. 37, 1685–1687 (2012).

    ADS  Google Scholar 

  31. 31.

    Epping, J. P. et al. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. Opt. Express 23, 19596–19604 (2015).

    ADS  Google Scholar 

  32. 32.

    Zhao, H. et al. Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 2177–2180 (2015).

    ADS  Google Scholar 

  33. 33.

    Wang, T. et al. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser Photon. Rev. 9, 498–506 (2015).

    ADS  Google Scholar 

  34. 34.

    Liu, X. et al. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide. Opt. Lett. 41, 2719–2722 (2016).

    ADS  Google Scholar 

  35. 35.

    Johnson, A. R. et al. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 5117–5120 (2015).

    ADS  Google Scholar 

  36. 36.

    Mayer, A. S. et al. Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides. Opt. Express 23, 15440–15451 (2015).

    ADS  Google Scholar 

  37. 37.

    Klenner, A. et al. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. Opt. Express 24, 11043–11053 (2016).

    ADS  Google Scholar 

  38. 38.

    Okawachi, Y. et al. Coherent, directional supercontinuum generation. Opt. Lett. 42, 4466–4469 (2017).

    ADS  Google Scholar 

  39. 39.

    Guo, H. et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photon. 12, 330–335 (2018).

    ADS  Google Scholar 

  40. 40.

    Carlson, D. R. et al. Photonic-chip supercontinuum with tailored spectra for counting optical frequencies. Phys. Rev. Appl. 8, 014027 (2017).

    ADS  Google Scholar 

  41. 41.

    Carlson, D. R. et al. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett. 42, 2314–2317 (2017).

    ADS  Google Scholar 

  42. 42.

    Okawachi, Y. et al. Carrier envelope offset detection via simultaneous supercontinuum and second harmonic generation in a silicon-nitride waveguide. Opt. Lett. 43, 4627–4630 (2018).

    ADS  Google Scholar 

  43. 43.

    Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

    ADS  Google Scholar 

  44. 44.

    Gai, X., Madden, S., Choi, D.-Y., Bulla, D. & Luther-Davies, B. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm. Opt. Express 18, 18866–18874 (2010).

    ADS  Google Scholar 

  45. 45.

    Karim, M. R., Rahman, B. M. A. & Agrawal, G. P. Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide. Opt. Express 23, 6903–6914 (2015).

    ADS  Google Scholar 

  46. 46.

    Herzog, A. et al. Chalcogenide waveguides on a sapphire substrate for mid-IR applications. Opt. Lett. 39, 2522–2525 (2014).

    ADS  Google Scholar 

  47. 47.

    Yu, Y. et al. Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Opt. Lett. 41, 958–961 (2016).

    ADS  Google Scholar 

  48. 48.

    Lamont, M. R. E., Luther-Davies, B., Choi, D.-Y., Madden, S. & Eggleton, B. J. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide. Opt. Express 16, 14938–14944 (2008).

    ADS  Google Scholar 

  49. 49.

    Tremblay, J.-E., Malinowski, M., Richardson, K. A., Fathpour, S. & Wu, M. C. Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides. Opt. Express 26, 21358–21363 (2018).

    ADS  Google Scholar 

  50. 50.

    Hammani, K. et al. Octave spanning supercontinuum in titanium dioxide waveguides. Appl. Sci. 8, 543 (2018).

    Google Scholar 

  51. 51.

    Dave, U. D. et al. Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate. Opt. Lett. 40, 3584–3587 (2015).

    ADS  Google Scholar 

  52. 52.

    Ettabib, M. A. et al. Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide. Opt. Lett. 40, 4118–4121 (2015).

    ADS  Google Scholar 

  53. 53.

    Sinobad, M. et al. Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides. Optica 5, 360–366 (2018).

    Google Scholar 

  54. 54.

    Yuan, J. et al. Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide. J. Lightwave Technol. 35, 2994–3002 (2017).

    ADS  Google Scholar 

  55. 55.

    Hickstein, D. D. et al. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Phys. Rev. Appl. 8, 014025 (2017).

    ADS  Google Scholar 

  56. 56.

    Phillips, C. R. et al. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. Opt. Lett. 36, 3912–3914 (2011).

    ADS  Google Scholar 

  57. 57.

    Oh, D. Y. Supercontinuum generation in an on-chip silica waveguide. Opt. Lett. 39, 1046–1048 (2014).

    ADS  Google Scholar 

  58. 58.

    Oh, D. Y. et al. Coherent ultra-violet to near-infrared generation in silica ridge waveguides. Nat. Commun. 8, 13922 (2016).

    Google Scholar 

  59. 59.

    Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. https://doi.org/10.1038/s41566-018-0347-5 (2019).

  60. 60.

    Hu, J. et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express 15, 2307–2314 (2007).

    ADS  Google Scholar 

  61. 61.

    Hu, H. et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photon. 12, 469–473 (2018).

    ADS  Google Scholar 

  62. 62.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Google Scholar 

  63. 63.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Google Scholar 

  64. 64.

    Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  65. 65.

    Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    ADS  Google Scholar 

  66. 66.

    Bao, C. et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett. 117, 163901 (2016).

    ADS  Google Scholar 

  67. 67.

    Yu, M. Breather soliton dynamics in microresonators. Nat Commun. 8, 14569 (2017).

    ADS  Google Scholar 

  68. 68.

    Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. L. & Kippenberg, T. J. Breathing dissipative solitons in optical microresonators. Nat Commun. 8, 736 (2017).

    ADS  Google Scholar 

  69. 69.

    Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    ADS  Google Scholar 

  70. 70.

    Matsko, A. B. et al. Mode-locked Kerr frequency combs. Opt. Lett. 36, 2845–2847 (2011).

    ADS  Google Scholar 

  71. 71.

    Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

    ADS  Google Scholar 

  72. 72.

    Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt. Lett. 38, 37–39 (2013).

    ADS  Google Scholar 

  73. 73.

    Lamont, M. R. E., Okawachi, Y. & Gaeta, A. L. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt. Lett. 38, 3478–3481 (2013).

    ADS  Google Scholar 

  74. 74.

    Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica 3, 854–860 (2016).

    Google Scholar 

  75. 75.

    Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012).

    ADS  Google Scholar 

  76. 76.

    Skryabin, D. V. & Kartashov, Y. V. Self-locking of the frequency comb repetition rate in microring resonators with higher order dispersions. Opt. Express 25, 27442–27451 (2017).

    ADS  Google Scholar 

  77. 77.

    Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

    ADS  Google Scholar 

  78. 78.

    Okawachi, Y. et al. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Opt. Lett. 39, 3535–3538 (2014).

    ADS  Google Scholar 

  79. 79.

    Bao, C. et al. High-order dispersion in Kerr comb oscillators. J. Opt. Soc. Am. B 34, 715–725 (2017).

    ADS  Google Scholar 

  80. 80.

    Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    ADS  Google Scholar 

  81. 81.

    Grudinin, I. S., Yu, N. & Maleki, L. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

    ADS  Google Scholar 

  82. 82.

    Levy, J. S. et al. CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

    ADS  Google Scholar 

  83. 83.

    Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photon. 4, 41–45 (2010).

    ADS  Google Scholar 

  84. 84.

    Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2013).

    ADS  Google Scholar 

  85. 85.

    Foster, M. A. et al. Silicon-based monolithic optical frequency comb source. Opt. Express 19, 14233–14239 (2011).

    ADS  Google Scholar 

  86. 86.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  87. 87.

    Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).

    Google Scholar 

  88. 88.

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Imaging soliton dynamics in optical microcavities. Nat. Commun. 9, 3565 (2018).

    ADS  Google Scholar 

  89. 89.

    Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    ADS  Google Scholar 

  90. 90.

    Brasch, V., Geiselmann, M., Pfeiffer, M. H. P. & Kippenberg, T. J. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24, 29312–29320 (2016).

    ADS  Google Scholar 

  91. 91.

    Cole, D. C. et al. Kerr-microresonator solitons from a chirped background. Optica 5, 1304–1310 (2018).

    Google Scholar 

  92. 92.

    Dutt, A. et al. On-chip dual comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    ADS  Google Scholar 

  93. 93.

    Jang, J. K. et al. Synchronization of coupled optical microresonators. Nat. Photon. 12, 688–693 (2018).

    ADS  Google Scholar 

  94. 94.

    Liang, W. et al. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett. 39, 2920–2923 (2014).

    ADS  Google Scholar 

  95. 95.

    Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    ADS  Google Scholar 

  96. 96.

    Xue, X. et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev. 9, L23–L28 (2015).

    Google Scholar 

  97. 97.

    Parra-Rivas, P., Gomila, D., Knobloch, E., Coen, S. & Gelens, L. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. Opt. Lett. 41, 2402–2405 (2016).

    ADS  Google Scholar 

  98. 98.

    Fülöp, A. et al. Long-haul coherent communications using microresonator-based frequency combs. Opt. Express 25, 26678–26688 (2017).

    ADS  Google Scholar 

  99. 99.

    Jang, J. K. et al. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion. Opt. Express 24, 28794–28803 (2016).

    ADS  Google Scholar 

  100. 100.

    Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

    ADS  Google Scholar 

  101. 101.

    Ramelow, S. et al. Strong polarization mode coupling in microresonators. Opt. Lett. 39, 5134–5137 (2014).

    ADS  Google Scholar 

  102. 102.

    Chembo, Y. K., Grudinin, I. S. & Yu, N. Spatiotemporal dynamics of Kerr-Raman optical frequency combs. Phys. Rev. A 92, 043818 (2015).

    ADS  Google Scholar 

  103. 103.

    Milián, C., Gorbach, A. V., Taki, M., Yulin, A. V. & Skryabin, D. V. Solitons and frequency combs in silica microring resonators: interplay of the Raman and higher-order dispersion effects. Phys. Rev. A 92, 033851 (2015).

    ADS  Google Scholar 

  104. 104.

    Karpov, M. et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett. 116, 103902 (2016).

    ADS  Google Scholar 

  105. 105.

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Opt. Lett. 41, 3419–3422 (2016).

    ADS  Google Scholar 

  106. 106.

    Wang, Y., Anderson, M., Coen, S., Murdoch, S. G. & Erkintalo, M. Stimulated Raman scattering imposes fundamental limits to the duration and bandwidth of temporal cavity solitons. Phys. Rev. Lett. 120, 053902 (2018).

    ADS  Google Scholar 

  107. 107.

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Stokes solitons in optical microcavities. Nat. Phys. 13, 53–57 (2017).

    Google Scholar 

  108. 108.

    Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation. Opt. Lett. 42, 2786–2789 (2017).

    Google Scholar 

  109. 109.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    ADS  Google Scholar 

  110. 110.

    Xuan, Y. et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 3, 1171–1180 (2016).

    Google Scholar 

  111. 111.

    Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    Google Scholar 

  112. 112.

    Pfeiffer, M. H. P. et al. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica 5, 884–892 (2018).

    Google Scholar 

  113. 113.

    Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    ADS  Google Scholar 

  114. 114.

    Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    ADS  Google Scholar 

  115. 115.

    Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Google Scholar 

  116. 116.

    Liu, J. et al. Ultralow-power chip-based soliton microcombs for photonic integration. Optica 5, 1347–1353 (2018).

    Google Scholar 

  117. 117.

    Luke, K., Okawachi, Y., Lamont, M., Gaeta, A. & Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40, 4823–4826 (2015).

    ADS  Google Scholar 

  118. 118.

    Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    ADS  Google Scholar 

  119. 119.

    Yang, K. Y. et al. Broadband dispersion-engineered microresonator on a chip. Nat. Photon. 10, 316–320 (2016).

    ADS  Google Scholar 

  120. 120.

    Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

    ADS  Google Scholar 

  121. 121.

    Suh, M.-G. & Vahala, K. Gigahertz-repetition-rate soliton microcombs. Optica 5, 65–66 (2018).

    Google Scholar 

  122. 122.

    Lee, S. H. et al. Towards visible soliton microcomb generation. Nat. Commun. 8, 1295 (2017).

    ADS  Google Scholar 

  123. 123.

    Lau, R. K. W., Lamont, M. R. E., Okawachi, Y. & Gaeta, A. L. Effects of multiphoton absorption on parametric comb generation in silicon microresonators. Opt. Lett. 40, 2778–2781 (2015).

    ADS  Google Scholar 

  124. 124.

    Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

    Google Scholar 

  125. 125.

    Hansson, T., Modotto, D. & Wabnitz, S. Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt. Lett. 39, 6747–6750 (2014).

    ADS  Google Scholar 

  126. 126.

    Hausmann, B. J. M., Bulu, I., Venkataraman, V., Deotare, P. & Lončar, M. Diamond nonlinear photonics. Nat. Photon. 8, 369–374 (2014).

    ADS  Google Scholar 

  127. 127.

    Jung, H., Stoll, R., Guo, X., Fischer, D. & Tang, H. X. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 1, 396–399 (2014).

    Google Scholar 

  128. 128.

    Gong, Z. et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett. 43, 4366–4369 (2018).

    ADS  Google Scholar 

  129. 129.

    Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).

    Google Scholar 

  130. 130.

    Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Preprint at https://arxiv.org/abs/1808.03554 (2018).

  131. 131.

    Wang, C. et al. On-chip Kerr frequency comb generation in lithium niobate microresonators. In Conf. Lasers Electro-Optics, OSA Technical Digest (online) Paper SW4M.3 (OSA, 2018).

  132. 132.

    Guo, X. et al. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl. 10, 014012 (2018).

    ADS  Google Scholar 

  133. 133.

    Jung, H., Fong, K. Y., Xiong, C. & Tang, H. X. Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators. Opt. Lett. 39, 84–87 (2014).

    ADS  Google Scholar 

  134. 134.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Google Scholar 

  135. 135.

    Pavlov, N. G. et al. Soliton dual frequency combs in crystalline microresonators. Opt. Lett. 42, 514–517 (2017).

    ADS  Google Scholar 

  136. 136.

    Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).

    ADS  Google Scholar 

  137. 137.

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).

    Google Scholar 

  138. 138.

    Joshi, C. et al. Counter-rotating cavity solitons in a silicon nitride microresonator. Opt. Lett. 43, 547–550 (2018).

    ADS  Google Scholar 

  139. 139.

    Lucas, E. et al. Spatial multiplexing of soliton microcombs. Nat. Photon. 12, 699–705 (2018).

    ADS  Google Scholar 

  140. 140.

    Yu, M. et al. Gas-phase microresonator-based comb spectroscopy without an external pump laser. ACS Photon. 5, 2780–2785 (2018).

    Google Scholar 

  141. 141.

    Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

    ADS  Google Scholar 

  142. 142.

    Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).

    ADS  Google Scholar 

  143. 143.

    Levy, J. S. et al. High-performance silicon-nitride-based multiple-wavelength source. Photon. Technol. Lett. 24, 1375–1377 (2012).

    ADS  Google Scholar 

  144. 144.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Google Scholar 

  145. 145.

    Bao, C. et al. Demonstration of optical multicasting using Kerr frequency comb lines. Opt. Lett. 41, 3876–3879 (2016).

    ADS  Google Scholar 

  146. 146.

    Willner, A. N. et al. Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb. Opt. Lett. 43, 5563–5566 (2018).

    ADS  Google Scholar 

  147. 147.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    ADS  Google Scholar 

  148. 148.

    Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    ADS  Google Scholar 

  149. 149.

    Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Google Scholar 

  150. 150.

    Wu, J. Y. et al. RF photonics: an optical microcombs’ perspective.IEEE J. Sel. Top. Quantum Electron. 24, 6101020 (2018).

    Google Scholar 

  151. 151.

    Xue, X. et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J. Light. Technol. 32, 3557–3565 (2014).

    ADS  Google Scholar 

  152. 152.

    Nguyen, T. G. et al. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt. Express 23, 22087–22097 (2015).

    ADS  Google Scholar 

  153. 153.

    Xu, X. et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photon. 2, 096104 (2017).

    ADS  Google Scholar 

  154. 154.

    Xu, X. et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt. Express 26, 2569–2583 (2018).

    ADS  Google Scholar 

  155. 155.

    Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photon. 5, 770–776 (2011).

    ADS  Google Scholar 

  156. 156.

    Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    ADS  Google Scholar 

  157. 157.

    Volet, N. et al. Micro‐resonator soliton generated directly with a diode laser. Laser Photon. Rev. 12, 1700307 (2018).

    ADS  Google Scholar 

  158. 158.

    Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. https://doi.org/10.1038/s41467-019-08498-2 (2019).

  159. 159.

    Uvin, S. et al. Narrow line width frequency comb source based on an injection-locked III-V-on-silicon mode-locked laser. Opt. Express 24, 5277–5286 (2016).

    ADS  Google Scholar 

  160. 160.

    Guzmán, R., Gordon, C., Orbe, L. & Carpintero, G. 1-GHz InP on-chip monolithic extended cavity colliding-pulse mode-locked laser. Opt. Lett. 42, 2318–2321 (2017).

    ADS  Google Scholar 

  161. 161.

    Liu, S. et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron. Lett. 54, 432–433 (2018).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Y. Okawachi and M. Yu for help in preparing Table 1 and Figs. 1, 2 and 6. This work was supported by AFOSR program award number FA9550-15-1-0303 and the ARPA-E PINE program.

Author information

Affiliations

Authors

Contributions

All authors discussed and edited the content in the manuscript.

Corresponding author

Correspondence to Alexander L. Gaeta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaeta, A.L., Lipson, M. & Kippenberg, T.J. Photonic-chip-based frequency combs. Nature Photon 13, 158–169 (2019). https://doi.org/10.1038/s41566-019-0358-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing