Interferometric attosecond lock-in measurement of extreme-ultraviolet circular dichroism

Abstract

Probing the vectorial properties of light–matter interactions inherently requires control over the polarization state of light. The generation of extreme-ultraviolet attosecond pulses has opened new perspectives in measurements of chiral phenomena. However, limited polarization control in this regime prevents the development of advanced vectorial measurement schemes. Here, we establish an extreme-ultraviolet lock-in detection scheme, allowing the isolation and amplification of extremely weak chiral signals, by achieving dynamical polarization control. We demonstrate a time-domain approach to control and modulate the polarization state, and perform its characterization via an in situ measurement. Our approach is based on the collinear superposition of two independent, phase-locked, orthogonally polarized extreme-ultraviolet sources and the control of their relative delay with sub-cycle accuracy. We achieve lock-in detection of magnetic circular dichroism, transferring weak amplitude variations into a phase modulation. This approach holds the potential to significantly extend the scope of vectorial measurements to the attosecond and nanometre frontiers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Interferometric control over polarization states.
Fig. 2: Interferometric control of two phase-locked XUV sources.
Fig. 3: In situ polarization characterization and spatial homogeneity.
Fig. 4: Phase-resolved XMCD.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Berova, N., Nakanishi, K. & Woody, R. Circular Dichroism: Principles and Applications (Wiley, New York, NY, 2000).

  2. 2.

    Calegari, F., Sansone, G., Stagira, S., Vozzi, C. & Nisoli, M. Advances in attosecond science. J. Phys. B 49, 062001 (2016).

    Article  ADS  Google Scholar 

  3. 3.

    Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  4. 4.

    Budil, K., Salières, P., L’Huillier, A., Ditmire, T. & Perry, M. Influence of ellipticity on harmonic generation. Phys. Rev. A 48, R3437–R3440 (1993).

    Article  ADS  Google Scholar 

  5. 5.

    Antoine, P., Carré, B., L’Huillier, A. & Lewenstein, M. Polarization of high-order harmonics. Phys. Rev. A 55, 1314–1324 (1997).

    Article  ADS  Google Scholar 

  6. 6.

    Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photon. 8, 543–549 (2014).

    Article  ADS  Google Scholar 

  7. 7.

    Kfir, O. et al. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nat. Photon. 9, 99–105 (2015).

    Article  ADS  Google Scholar 

  8. 8.

    Fan, T. et al. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism. Proc. Natl Acad. Sci. USA 112, 14206–14211 (2015).

    Article  ADS  Google Scholar 

  9. 9.

    Zhou, X. et al. Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields. Phys. Rev. Lett. 102, 073902 (2009).

    Article  ADS  Google Scholar 

  10. 10.

    Mairesse, Y. et al. High harmonic spectroscopy of multichannel dynamics in strong-field ionization. Phys. Rev. Lett. 104, 213601 (2010).

    Article  ADS  Google Scholar 

  11. 11.

    Skantzakis, E. et al. Polarization shaping of high-order harmonics in laser-aligned molecules. Sci. Rep. 6, 39295 (2016).

    Article  ADS  Google Scholar 

  12. 12.

    Ferré, A. et al. A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments. Nat. Photon. 9, 93–98 (2015).

    Article  ADS  Google Scholar 

  13. 13.

    Gruson, V. et al. Interferometric control of the ellipticity of a femtosecond extreme ultraviolet source. J. Opt. Soc. Am. B 35, A15–A21 (2018).

    Article  Google Scholar 

  14. 14.

    Höchst, H., Patel, R. & Middleton, F. Multiple-reflection λ4 phase shifter: a viable alternative to generate circular-polarized synchrotron radiation. Nucl. Instrum. Methods Phys. Res. A 347, 107–114 (1994).

    Article  ADS  Google Scholar 

  15. 15.

    Vodungbo, B. et al. Polarization control of high order harmonics in the EUV photon energy range. Opt. Express 19, 4346–4356 (2011).

    Article  ADS  Google Scholar 

  16. 16.

    Depresseux, A. et al. Demonstration of a circularly polarized plasma-based soft-X-ray laser. Phys. Rev. Lett. 115, 083901 (2015).

    Article  ADS  Google Scholar 

  17. 17.

    Schmidt, J., Guggenmos, A., Hofstetter, M., Chew, S. H. & Kleineberg, U. Generation of circularly polarized high harmonic radiation using a transmission multilayer quarter waveplate. Opt. Express 23, 33564–33578 (2015).

    Article  ADS  Google Scholar 

  18. 18.

    Ellis, J. L. et al. High harmonics with spatially varying ellipticity. Optica 5, 479–485 (2018).

    Article  Google Scholar 

  19. 19.

    Hickstein, D. D. et al. Non-collinear generation of angularly isolated circularly polarized high harmonics. Nat. Photon. 9, 743–750 (2015).

    Article  ADS  Google Scholar 

  20. 20.

    Huang, P.-C. et al. Polarization control of isolated high-harmonic pulses. Nat. Photon. 12, 349–354 (2018).

    Article  Google Scholar 

  21. 21.

    Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science 348, 530–535 (2015).

    MathSciNet  Article  ADS  Google Scholar 

  22. 22.

    Kfir, O. et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv. 3, eaao4641 (2017).

    Article  Google Scholar 

  23. 23.

    Nahon, L., Garcia, G. A. & Powis, I. Valence shell one-photon photoelectron circular dichroism in chiral systems. J. Electron. Spectros. Relat. Phenom 204, 322–334 (2015).

    Article  Google Scholar 

  24. 24.

    Rabinovitch, K., Canfield, L. & Madden, R. A method for measuring polarization in the vacuum ultraviolet. Appl. Opt. 4, 1005–1010 (1965).

    Article  ADS  Google Scholar 

  25. 25.

    Huang, P.-C. et al. Generation and characterization of isolated, circularly polarized, attosecond pulses. In The European Conference on Lasers and Electro-Optics, CG_1_5 (Optical Society of America, 2017).

  26. 26.

    Jiménez-Galán, Á. et al. Attosecond recorder of the polarization state of light. Nat. Commun. 9, 850 (2018).

    Article  ADS  Google Scholar 

  27. 27.

    Veyrinas, K. et al. Molecular frame photoemission by a comb of elliptical high-order harmonics: a sensitive probe of both photodynamics and harmonic complete polarization state. Faraday Discuss. 194, 161–183 (2016).

    Article  ADS  Google Scholar 

  28. 28.

    Chen, C. et al. Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology. Sci. Adv. 2, e1501333 (2016).

    Article  ADS  Google Scholar 

  29. 29.

    Valencia, S. et al. Faraday rotation spectra at shallow core levels: 3p edges of Fe, Co, and Ni. New J. Phys. 8, 254 (2006).

    Article  ADS  Google Scholar 

  30. 30.

    McNulty, I. et al. High-resolution imaging by Fourier transform X-ray holography. Science 256, 1009–1012 (1992).

    Article  ADS  Google Scholar 

  31. 31.

    Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    MathSciNet  Article  ADS  Google Scholar 

  32. 32.

    Beaulieu, S. et al. Attosecond-resolved photoionization of chiral molecules. Science 358, 1288–1294 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Naaman, A. Capua, T. Ruchon and S. Beaulieu for helpful discussions, S. Valencia Molina for providing the synchrotron data and E. Capua and G. Leitus for performing the superconducting quantum interference device measurement. N.D. is the incumbent of the Robin Chemers Neustein Professorial Chair. N.D. acknowledges the Minerva Foundation, the Israeli Science Foundation, the Crown Center of Photonics and the European Research Council for financial support. M.K. acknowledges financial support by the Minerva Foundation and the Koshland Foundation. This project has received funding from the European Research Council under the European Union Horizon 2020 research and innovation program 682978, EXCITERS.

Author information

Affiliations

Authors

Contributions

N.D. supervised the study. D.A. designed and built the experimental set-up. D.A., O.K. and M.K. carried out the measurements and analysed the data. B.D.B. supported the operation of the laser system. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Nirit Dudovich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information on the work, Supplementary Table 1 and Supplementary Figures 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azoury, D., Kneller, O., Krüger, M. et al. Interferometric attosecond lock-in measurement of extreme-ultraviolet circular dichroism. Nature Photon 13, 198–204 (2019). https://doi.org/10.1038/s41566-019-0350-5

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing