Letter | Published:

Electron–hole liquid in a van der Waals heterostructure photocell at room temperature

Nature Photonics (2019) | Download Citation

Abstract

In semiconductors, photo-excited charge carriers exist as a gas of electrons and holes, bound electron–hole pairs (excitons), biexcitons and trions1,2,3,4. At sufficiently high densities, the non-equilibrium system of electrons (e) and holes (h+) may merge into an electronic liquid droplet5,6,7,8,9,10. Here, we report on the electron–hole liquid in ultrathin MoTe2 photocells revealed through multi-parameter dynamic photoresponse microscopy (MPDPM). By combining rich visualization with comprehensive analysis of very large data sets acquired through MPDPM, we find that ultrafast laser excitation at a graphene–MoTe2–graphene interface leads to the abrupt formation of ring-like spatial patterns in the photocurrent response as a function of increasing optical power at T = 297 K. The sudden onset to these patterns, together with extreme sublinear power dependence and picosecond-scale photocurrent dynamics, provide strong evidence for the formation of a two-dimensional electron–hole liquid droplet. The electron–hole liquid, which features a macroscopic population of correlated electrons and holes, may offer a path to room-temperature optoelectronic devices that harness collective electronic phenomena.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Lampert, M. Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys. Rev. Lett. 1, 450–453 (1958).

  2. 2.

    Kheng, K., Cox, R. & D’Aubigné, M. Observation of negatively charged excitons X in semiconductor quantum wells. Phys. Rev. Lett. 71, 1752–1755 (1993).

  3. 3.

    Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nat. Mater. 5, 683–696 (2006).

  4. 4.

    Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

  5. 5.

    Keldysh, L. V. Proceedings of the 9th International Conference on Physics of Semiconductors 1303 (Nauka, Leningrad, 1968).

  6. 6.

    Jeffries, C. D. Electron–hole condensation in semiconductors. Science 189, 955–964 (1975).

  7. 7.

    Keldysh, L. V. The electron–hole liquid in semiconductors. Contemp. Phys. 27, 395–428 (1986).

  8. 8.

    Kaindl, R. A., Carnahan, M. A., Hägele, D., Lövenich, R. & Chemla, D. S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas. Nature 423, 734–738 (2003).

  9. 9.

    Almand-Hunter, A. E. et al. Quantum droplets of electrons and holes. Nature 506, 471–475 (2014).

  10. 10.

    Rustagi, A. & Kemper, A. Theoretical phase diagram for the room-temperature electron–hole liquid in photoexcited quasi-two-dimensional monolayer MoS2. Nano. Lett. 18, 455–459 (2018).

  11. 11.

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

  12. 12.

    Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 9, 466–470 (2015).

  13. 13.

    Sun, D. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano. Lett. 14, 5625–5629 (2014).

  14. 14.

    Froehlicher, G., Lorchat, E. & Berciaud, S. Direct versus indirect band gap emission and exciton–exciton annihilation in atomically thin molybdenum ditelluride MoTe2. Phys. Rev. B 94, 085429 (2016).

  15. 15.

    Zhang, K. et al. Ultrasensitive near-infrared photodetectors based on a graphene–MoTe2–graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces 9, 5392–5398 (2017).

  16. 16.

    Wang, F. et al. Strong electrically tunable MoTe2–graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices. App. Phys. Lett. 109, 193111 (2016).

  17. 17.

    Kuiri, M. et al. Enhancing photoresponsivity using MoTe2–graphene vertical heterostructures. App. Phys. Lett. 108, 063506 (2016).

  18. 18.

    Octon, T. J., Nagareddy, V. K., Russo, S., Craciun, M. F. & Wright, C. D. Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater. 4, 1750–1754 (2016).

  19. 19.

    Ruppert, C., Aslan, O. B. & Heinz, T. F. Optical properties and band gap of single and few-layer MoTe2 crystals. Nano. Lett. 14, 6231–6236 (2014).

  20. 20.

    Lezama, I. G. et al. Indirect-to-direct band gap crossover in few-layer MoTe2. Nano. Lett. 15, 2336–2342 (2015).

  21. 21.

    Kekelidzet, G. P. & Evans, B. L. The photovoltage in single crystals of α-MoTe2. Brit. J. Appl. Phys. 2, 855–861 (1969).

  22. 22.

    Gabor, N. M., Zhong, Z., Bosnick, K. & McEuen, P. L. Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube p−i−n photodiodes. Phys. Rev. Lett. 108, 087404 (2012).

  23. 23.

    Wang, H., Zhang, C., Chan, W., Tiwari, S. & Rana, F. Ultrafast response of monolayer molybdenum disulfide photodetectors. Nat. Commun. 6, 8831 (2015).

  24. 24.

    Ma, Q. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 12, 455–459 (2016).

  25. 25.

    Vogt, K. T., Shi, S., Wang, F. & Graham, M. Isolating exciton extraction pathways with electric field-dependent ultrafast photocurrent microscopy. Conference on Lasers and Electro-Optics (Optical Society of America Technical Digest, Washington, 2016).

  26. 26.

    Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016).

  27. 27.

    Massicotte, M. et al. Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun. 7, 12174 (2016).

  28. 28.

    Sun, Y. et al. The Zeeman splitting of bulk 2H-MoTe2 single crystal in high magnetic field. Appl. Phys. Lett. 110, 102102 (2017).

  29. 29.

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

  30. 30.

    Arora, A. et al. Valley Zeeman splitting and valley polarization of neutral and charged excitons in monolayer MoTe2 at high magnetic fields. Nano. Lett. 16, 3624–3629 (2016).

  31. 31.

    Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. Lett. 1, 1–8 (2014).

  32. 32.

    Steinmeyer, G. A review of ultrafast optics and optoelectronics. J. Opt. A 5, R1–R15 (2003).

  33. 33.

    Fushitani, M. Applications of pump-probe spectroscopy. Annu. Rep. Prog. Chem. C 104, 272 (2008).

Download references

Acknowledgements

The authors would like to acknowledge valuable discussions with C. Varma. This work was supported by the Air Force Office of Scientific Research Young Investigator Program (YIP) award number FA9550-16-1-0216, as part of the SHINES Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award number SC0012670, and through support from the National Science Foundation Division of Materials Research CAREER award number 1651247. D.P. and N.M.G received support from SHINES. N.M.G. acknowledges support through a Cottrell Scholar Award, and through the Canadian Institute for Advanced Research (CIFAR) Azrieli Global Scholar Award. T.B.A. acknowledges support from the Fellowships and Internships in Extremely Large Data Sets (FIELDS) Program, a NASA MUREP Institutional Research Opportunity (MIRO) Program, grant number NNX15AP99A. V.A. acknowledges support from the National Science Foundation Division of Materials Research award number 1506707.

Author information

Author notes

  1. These authors contributed equally: Trevor B. Arp, Dennis Pleskot.

Affiliations

  1. Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA

    • Trevor B. Arp
    • , Vivek Aji
    •  & Nathaniel M. Gabor
  2. Laboratory of Quantum Materials Optoelectronics, University of California, Riverside, Riverside, CA, USA

    • Trevor B. Arp
    • , Dennis Pleskot
    •  & Nathaniel M. Gabor
  3. Department of Materials Science and Engineering, University of California, Riverside, Riverside, CA, USA

    • Dennis Pleskot
    •  & Nathaniel M. Gabor
  4. Canadian Institute for Advanced Research, Toronto, Ontario, Canada

    • Nathaniel M. Gabor

Authors

  1. Search for Trevor B. Arp in:

  2. Search for Dennis Pleskot in:

  3. Search for Vivek Aji in:

  4. Search for Nathaniel M. Gabor in:

Contributions

N.M.G. proposed and supervised the project. T.B.A. conducted photoresponse imaging experiments. D.P. synthesized the photocell devices. V.A. supported the direction and interpretation of the experiments through theoretical understanding of the data. All authors participated in analysing the data, interpreting the experimental results and preparing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Nathaniel M. Gabor.

Supplementary information

  1. Supplementary Information

    Supplementary Text, Supplementary Figures 1–14 and captions for Supplementary Videos 1–3.

  2. Supplementary Video 1

    Photocurrent images versus power in the long Δt limit.

  3. Supplementary Video 2

    Nonlinearity maps versus time delay.

  4. Supplementary Video 3

    Photocurrent maps versus power in the short Δt limit.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41566-019-0349-y