Article | Published:

Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array


Excitons in monolayer transition metal dichalcogenides are formed at K and K′ points at the boundary of the Brillouin zone. They acquire a valley degree of freedom, which has been explored as an alternative information carrier, analogous to charge or spin. Two opposite valleys in transition metal dichalcogenides can be optically addressed using light with different helicity. Here, we demonstrate that valley-polarized excitons can be sorted and spatially separated at room temperature by coupling a MoS2 monolayer to a subwavelength asymmetric groove array. In addition to separation of valley excitons in real space, emission from valley excitons is also separated in photon momentum-space; that is, the helicity of photons determines a preferential emission direction. Our work demonstrates that metasurfaces can facilitate valley transport and establish an interface between valleytronic and photonic devices, thus addressing outstanding challenges in the field of valleytronics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the figures in this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  2. 2.

    Xiao, D. et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  3. 3.

    Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

  4. 4.

    Gunawan, O. et al. Valley susceptibility of an interacting two-dimensional electron system. Phys. Rev. Lett. 97, 186404 (2006).

  5. 5.

    Shkolnikov, Y., De Poortere, E., Tutuc, E. & Shayegan, M. Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys. Rev. Lett. 89, 226805 (2002).

  6. 6.

    Rycerz, A., Tworzydło, J. & Beenakker, C. Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007).

  7. 7.

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

  8. 8.

    Zeng, H. et al. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

  9. 9.

    Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

  10. 10.

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

  11. 11.

    Onga, M., Zhang, Y., Ideue, T. & Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater. 16, 1193–1197 (2017).

  12. 12.

    Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

  13. 13.

    Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

  14. 14.

    Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).

  15. 15.

    Lui, C. et al. Trion-induced negative photoconductivity in monolayer MoS2. Phys. Rev. Lett. 113, 166801 (2014).

  16. 16.

    Singh, A. et al. Trion formation dynamics in monolayer transition metal dichalcogenides. Phys. Rev. B 93, 041401 (2016).

  17. 17.

    Novikov, I. V. & Maradudin, A. A. Channel polaritons. Phys. Rev. B 66, 035403 (2002).

  18. 18.

    Pile, D. F. & Gramotnev, D. K. Channel plasmon–polariton in a triangular groove on a metal surface. Opt. Lett. 29, 1069–1071 (2004).

  19. 19.

    Volkov, V. S. et al. Nanofocusing with channel plasmon polaritons. Nano Lett. 9, 1278–1282 (2009).

  20. 20.

    Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015).

  21. 21.

    Kapitanova, P. V. et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun. 5, 3226 (2014).

  22. 22.

    Mueller, J. B. & Capasso, F. Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface. Phys. Rev. B 88, 121410 (2013).

  23. 23.

    Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).

  24. 24.

    Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

  25. 25.

    Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013).

  26. 26.

    Gong, S.-H. et al. Nanoscale chiral valley–photon interface through optical spin–orbit coupling. Science 359, 443–447 (2018).

  27. 27.

    Wang, C.-Y. et al. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nat. Commun. 6, 7734 (2015).

  28. 28.

    Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

  29. 29.

    Shi, J. et al. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton. Nat. Commun. 8, 35 (2017).

  30. 30.

    Chervy, T. et al. Room temperature chiral coupling of valley excitons with spin–momentum locked surface plasmons. ACS Photon. 5, 1281–1287 (2018).

  31. 31.

    Guddala, S. et al. Valley selective optical control of excitons in 2D semiconductors using chiral metasurface. Preprint at (2018).

  32. 32.

    Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

  33. 33.

    Malic, E. et al. Dark excitons in transition metal dichalcogenides. Phys. Rev. Mater. 2, 014002 (2018).

  34. 34.

    Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

  35. 35.

    Park, K.-D. et al. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat. Nanotechnol. 13, 59–64 (2018).

  36. 36.

    Yu, H., Liu, G.-B. & Yao, W. Brightened spin–triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).

  37. 37.

    Ziwei, L. et al. Tailoring MoS2 valley-polarized photoluminescence with super chiral near-field. Adv. Mater. 30, 1801908 (2018).

  38. 38.

    Yu, H. et al. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

  39. 39.

    Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

  40. 40.

    Su, X. et al. Negative reflection from metal/graphene plasmonic gratings. Opt. Lett. 41, 348–351 (2016).

  41. 41.

    Asadchy, V. S. et al. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B 94, 075142 (2016).

  42. 42.

    Yin, X. et al. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

  43. 43.

    Tran, K. et al. Moiré excitons in van der Waals heterostructures. Preprint at (2018).

  44. 44.

    Wu, Y. et al. Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Adv. Mater. 26, 6106–6110 (2014).

  45. 45.

    Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

Download references


L.S., A.Z., C.-K.S. and X.L. were supported by NSF EFMA-1542747 and NSF DMR-1306878. J.C., C.-K.S., X.L. and A.A. are supported by NSF MRSEC programme DMR-1720595. X.L. also acknowledges support from the Welch Foundation via grant F-1662. A.A., A.K. and J.S.G.-D. were partially supported by the Air Force Office of Scientific Research (MURI grant no. FA9550-17-1-0002), the DARPA Nascent program and the Welch Foundation (grant no. F-1802). S.G. and C.-Y.W. acknowledge support from the Ministry of Science and Technology (MOST) in Taiwan (MOST 105-2112-M-007-011-MY3). Collaboration between National Tsing-Hua University and The University of Texas at Austin is facilitated by the Global Networking Talent (NT 3.0) Program, Ministry of Education in Taiwan. J.S.G.-D. is supported by NSF CAREER grant no. ECCS-1749177. J.S. acknowledges support from NSFC (11774035 and 11674032).

Author information

L.S. led the optical experiments. C.-Y.W. synthesized the silver plates and fabricated the metasurface. A.K. performed the simulations. J.C., J.S. and A.Z. assisted with experiments. L.S., C.-Y.W., A.K., X.L. and A.A. wrote the manuscript. X.L., A.A., C.-K.S. and S.G. designed and supervised the project. All authors discussed the results and commented on the manuscript at all stages.

Competing interests

The authors declare no competing interests.

Correspondence to Andrea Alù or Xiaoqin Li.

Supplementary information

Supplementary Information

Supplementary discussion and data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Schematics of optically addressable valleys and spatial separation of valley excitons by a metasurface.
Fig. 2: Metasurface design principle.
Fig. 3: Experimental observation of separation of valley excitons in real space.
Fig. 4: Experimental observation of valley exciton emission separation in momentum space.