Temporal solitons in free-space femtosecond enhancement cavities


Temporal dissipative solitons in nonlinear optical resonators are self-compressed, self-stabilizing and indefinitely circulating wave packets. Owing to these properties, they have been harnessed for the generation of ultrashort pulses and frequency combs in active and passive laser architectures, including mode-locked lasers1,2,3,4, passive fibre resonators5 and microresonators6,7,8,9,10,11. Here, we demonstrate the formation of temporal dissipative solitons in a free-space enhancement cavity with a Kerr nonlinearity and a spectrally tailored finesse. By locking a 100-MHz-repetition-rate train of 350-fs, 1,035-nm pulses to this cavity-soliton state, we generate a 37-fs sech²-shaped pulse with a peak-power enhancement of 3,200, which exhibits low-frequency intensity-noise suppression. The power scalability unique to free-space cavities, the unprecedented combination of peak-power enhancement and temporal compression, and the cavity-soliton-specific noise filtering attest to the vast potential of this platform of optical solitons for applications including spatiotemporal filtering and compression of ultrashort pulses and cavity-enhanced nonlinear frequency conversion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Concept for efficient CS generation.
Fig. 2: Set-up, locking scheme and f0-dependence of the soliton regime.
Fig. 3: Soliton evolution.
Fig. 4: Soliton characterization.
Fig. 5: Phase and intensity stability.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Mollenauer, L. F. & Stolen, R. H. The soliton laser. Opt. Lett. 9, 13–15 (1984).

    Article  ADS  Google Scholar 

  2. 2.

    Brabec, T., Spielmann, C. & Krausz, F. Mode locking in solitary lasers. Opt. Lett. 16, 1961–1963 (1991).

    Article  ADS  Google Scholar 

  3. 3.

    Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quant. Electron. 6, 1173–1185 (2000).

    Article  ADS  Google Scholar 

  4. 4.

    Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012).

    Article  ADS  Google Scholar 

  5. 5.

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  6. 6.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  7. 7.

    Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2013).

    Article  ADS  Google Scholar 

  8. 8.

    Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  Google Scholar 

  9. 9.

    Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  Google Scholar 

  10. 10.

    Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    MathSciNet  Article  ADS  Google Scholar 

  11. 11.

    Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Article  Google Scholar 

  12. 12.

    Pasquazi, A. et al. Micro-combs. A novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).

    MathSciNet  Article  ADS  Google Scholar 

  13. 13.

    Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photon. 7, 657–663 (2013).

    Article  ADS  Google Scholar 

  14. 14.

    Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  15. 15.

    Jones, R. J. & Ye, J. Femtosecond pulse amplification by coherent addition in a passive optical cavity. Opt. Lett. 27, 1848–1850 (2002).

    Article  ADS  Google Scholar 

  16. 16.

    Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article  ADS  Google Scholar 

  17. 17.

    Adler, F., Thorpe, M. J., Cossel, K. C. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3, 175–205 (2010).

    Article  Google Scholar 

  18. 18.

    Foltynowicz, A., Ban, T., Masłowski, P., Adler, F. & Ye, J. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett. 107, 233002 (2011).

    Article  ADS  Google Scholar 

  19. 19.

    Cingoz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    Article  ADS  Google Scholar 

  20. 20.

    Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).

    Article  ADS  Google Scholar 

  21. 21.

    Reber, M. A. R., Chen, Y. & Allison, T. K. Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive. Optica 3, 311–317 (2016).

    Article  Google Scholar 

  22. 22.

    Holzberger, S. et al. Femtosecond enhancement cavities in the nonlinear regime. Phys. Rev. Lett. 115, 23902 (2015).

    Article  ADS  Google Scholar 

  23. 23.

    Coen, S. & Haelterman, M. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys. Rev. Lett. 79, 4139–4142 (1997).

    Article  ADS  Google Scholar 

  24. 24.

    Lucas, E., Guo, H., Jost, J. D., Karpov, M. & Kippenberg, T. J. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A 95, 043822 (2017).

    Article  ADS  Google Scholar 

  25. 25.

    Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

    Article  ADS  Google Scholar 

  26. 26.

    Xu, Y. & Coen, S. Experimental observation of the spontaneous breaking of the time-reversal symmetry in a synchronously pumped passive Kerr resonator. Opt. Lett. 39, 3492–3495 (2014).

    Article  ADS  Google Scholar 

  27. 27.

    Hendry, I. et al. Spontaneous symmetry breaking and trapping of temporal Kerr cavity solitons by pulsed or amplitude modulated driving fields. Phys. Rev. A 97, 053834 (2018).

    Article  ADS  Google Scholar 

  28. 28.

    Schulte, J., Sartorius, T., Weitenberg, J., Vernaleken, A. & Russbueldt, P. Nonlinear pulse compression in a multi-pass cell. Opt. Lett. 41, 4511–4514 (2016).

    Article  ADS  Google Scholar 

  29. 29.

    Lilienfein, N. et al. Enhancement cavities for few-cycle pulses. Opt. Lett. 42, 271–274 (2017).

    Article  ADS  Google Scholar 

  30. 30.

    Lilienfein, N. et al. Balancing of thermal lenses in enhancement cavities with transmissive elements. Opt. Lett. 40, 843–846 (2015).

    Article  ADS  Google Scholar 

  31. 31.

    Mills, A. K. et al. An XUV source using a femtosecond enhancement cavity for photoemission spectroscopy. Proc. SPIE 9512, 95121I (2015).

    Article  Google Scholar 

  32. 32.

    Corder, C. et al. Ultrafast extreme ultraviolet photoemission without space charge. Struct. Dyn. 5, 054301 (2018).

    Article  Google Scholar 

  33. 33.

    Saule, T. et al. High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate. Nat. Commun. https://doi.org/10.1038/s41467-019-08367-y (2019).

  34. 34.

    Kumkar, S. et al. Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system. Opt. Lett. 37, 554–557 (2012).

    Article  ADS  Google Scholar 

  35. 35.

    Wunram, M. et al. Ultrastable fiber amplifier delivering 145-fs pulses with 6-μJ energy at 10-MHz repetition rate. Opt. Lett. 40, 823–826 (2015).

    Article  ADS  Google Scholar 

Download references


The authors gratefully acknowledge helpful suggestions from T. Herr and A. Apolonskiy. The authors thank S. Breitkopf and T. Buberl for assistance with the laser system, J. Gessner for phase measurements of cavity mirrors and M. Fischer for support concerning the offset-frequency stabilization. The authors thank the European Research Council (ERC) (617173), Deutsche Forschungsgemeinschaft (DFG) Excellence cluster ‘Munich Centre of Advanced Photonics’ (MAP) for funding.

Author information




N.L., C.H. and I.P. planned and coordinated the experiments. N.L. designed and performed the experiments, and analysed the data. C.H., T.S., M.H. and I.P. assisted with experiments and data analysis. M.H. and N.L. developed the model and performed the simulations. V.P. and M.T. designed and produced the cavity optics. E.F. contributed to the experimental concept. C.R. and A.L. conceived and implemented the spectral shift of the erbium oscillator for seeding the ytterbium amplifier system. J.L. designed and provided the amplifier system. N.L., M.H. and I.P. wrote the manuscript with input from all other authors. I.P. and F.K. supervised the project.

Corresponding authors

Correspondence to N. Lilienfein or I. Pupeza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information on the simulation methods and results, and Supplementary Figures 1–8.

Supplementary Video 1

Locking procedure.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lilienfein, N., Hofer, C., Högner, M. et al. Temporal solitons in free-space femtosecond enhancement cavities. Nature Photon 13, 214–218 (2019). https://doi.org/10.1038/s41566-018-0341-y

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing