Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three-dimensional femtosecond laser nanolithography of crystals


So far, nanostructuring of hard optical crystals has been exclusively limited to their surface, as stress-induced crack formation and propagation render high-precision volume processes ineffective1,2. Here, we show that the rate of nanopore chemical etching in the popular laser crystals yttrium aluminium garnet and sapphire can be enhanced by more than five orders of magnitude (from <0.6 nm h−1 to ~100 µm h−1) by the use of direct laser writing, before etching. The process makes it possible to produce arbitrary three-dimensional nanostructures with 100 nm feature sizes inside centimetre-scale laser crystals without brittle fracture. To showcase the potential of the technique we fabricate subwavelength diffraction gratings and nanostructured optical waveguides in yttrium aluminium garnet and millimetre-long nanopores in sapphire. The approach offers a pathway for transferring concepts from nanophotonics to the fields of solid-state lasers and crystal optics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wet etching of nanopore lattices fabricated by 3DLW in YAG.
Fig. 2: Etching of mm-long nanopores in sapphire.
Fig. 3: 3DLW nanostructures in YAG with 100 nm feature sizes and filling fraction control.
Fig. 4: Subwavelength diffraction gratings and MOW in YAG crystals.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Gamaly, E. G. et al. Laser–matter interaction in the bulk of a transparent solid: confined microexplosion and void formation. Phys. Rev. B 73, 214101 (2006).

    Article  ADS  Google Scholar 

  2. Juodkazis, S., Mizeikis, V. & Misawa, H. Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications. J. Appl. Phys. 106, 051101 (2009).

    Article  ADS  Google Scholar 

  3. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  4. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  5. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  6. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  7. Jain, K., Willson, C. G. & Lin, B. J. Ultrafast deep UV lithography with excimer lasers. IEEE Electron Device Lett. 3, 53–55 (1982).

    Article  ADS  Google Scholar 

  8. McGarvey-Lechable, K. et al. Slow light in mass-produced dispersion-engineered photonic crystal ring resonators. Opt. Express 25, 3916–3926 (2017).

    Article  ADS  Google Scholar 

  9. Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997).

    Article  ADS  Google Scholar 

  10. Straub, M. & Gu, M. Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization. Opt. Lett. 27, 1824–1826 (2002).

    Article  ADS  Google Scholar 

  11. Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444–447 (2004).

    Article  ADS  Google Scholar 

  12. Wong, S. et al. Direct laser writing of three‐dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses. Adv. Mater. 18, 265–269 (2006).

    Article  Google Scholar 

  13. Hermatschweiler, M., Ledermann, A., Ozin, G. A., Wegener, M. & von Freymann, G. Fabrication of silicon inverse woodpile photonic crystals. Adv. Funct. Mater. 17, 2273–2277 (2007).

    Article  Google Scholar 

  14. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  ADS  Google Scholar 

  15. Knight, J. C., Birks, T. A., Russell, P., St., J. & Atkin, D. M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996).

    Article  ADS  Google Scholar 

  16. Russell, P. Photonic crystal fibers. Science 299, 358–363 (2003).

    Article  ADS  Google Scholar 

  17. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  18. Rarity, J. G. et al. Photonic crystal fiber source of correlated photon pairs. Opt. Express 13, 534–544 (2005).

    Article  ADS  Google Scholar 

  19. Francis-Jones, R. J. A., Hoggarth, R. A. & Mosley, P. J. All-fiber multiplexed source of high-purity single photons. Optica 3, 1270–1273 (2016).

    Article  Google Scholar 

  20. Glezer, E. N. & Mazur, E. Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71, 882–884 (1997).

    Article  ADS  Google Scholar 

  21. Juodkazis, S. et al. Control over the crystalline state of sapphire. Adv. Mater. 18, 1361–1364 (2006).

    Article  Google Scholar 

  22. Fischer, J. et al. Three-dimensional multi-photon direct laser writing with variable repetition rate. Opt. Express 21, 26244–26260 (2013).

    Article  ADS  Google Scholar 

  23. Henry, M. D., Walavalkar, S., Homyk, A. & Scherer, A. Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars. Nanotechnology 20, 255305 (2009).

    Article  ADS  Google Scholar 

  24. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).

    Article  ADS  Google Scholar 

  25. Clausnitzer, T. et al. Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency. Opt. Express 16, 5577–5584 (2008).

    Article  ADS  Google Scholar 

  26. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, 6402 (2018).

    Article  Google Scholar 

  27. Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article  ADS  Google Scholar 

  28. Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016).

    Article  ADS  Google Scholar 

  29. Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).

    Article  Google Scholar 

  30. Basterfield, J. The chemical polishing of yttrium iron garnet. J. Phys. D 2, 1159–1161 (1969).

    Article  ADS  Google Scholar 

  31. Zhou, G. et al. Axial birefringence induced focus splitting in lithium niobate. Opt. Express 17, 17970–17975 (2009).

    Article  ADS  Google Scholar 

  32. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  Google Scholar 

  33. Zelmon, D. E., Small, D. L. & Page, R. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm. Appl. Opt. 37, 4933–4935 (1998).

    Article  ADS  Google Scholar 

Download references


The work was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Individual Fellowships EXTREMELIGHT project (grant agreement no. 747055). A.R. and R.O. acknowledge support from Laserlab-Europe (grant agreement no. 654148, European Union’s Horizon 2020 research and innovation programme). G.C. and R.O. acknowledge support from the European Research Council (ERC) Advanced Grant programme (CAPABLE, grant agreement no. 742745). M.G. acknowledges support from the Australian Research Council (ARC) through the Discovery Project (DP170101775). S.J. acknowledges support from the US Department of Energy DOE-BES in a subcontract under award no. DE-FG02-06ER46347. A.K.K. acknowledges support from the UK Engineering and Physical Sciences Research Council (EP/M015130/1 and EP/G037523/1).

Author information

Authors and Affiliations



The investigation was carried out by A.R. Conceptualization was developed by A.R., M.G. and R.O. The methodology was developed by A.R., G.C., P.P. and R.O. Validation was performed by A.R., P.P. and G.C. Formal analysis was carried out by A.R. and S.J. Resources were provided by A.R. and R.O. The manuscript was written by A.R. and R.O., with review by all authors. Visualization was carried out by A.R. and G.C. Supervision was provided by A.R., M.G., S.J., A.K.K. and R.O.

Corresponding author

Correspondence to Airán Ródenas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Details of 3D etching and optical characterization of nanostructures

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ródenas, A., Gu, M., Corrielli, G. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nature Photon 13, 105–109 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing