Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Super-resolution enhancement by quantum image scanning microscopy


The principles of quantum optics have yielded a plethora of ideas to surpass the classical limitations of sensitivity and resolution in optical microscopy. While some ideas have been applied in proof-of-principle experiments, imaging a biological sample has remained challenging, mainly due to the inherently weak signal measured and the fragility of quantum states of light. In principle, however, these quantum protocols can add new information without sacrificing the classical information and can therefore enhance the capabilities of existing super-resolution techniques. Image scanning microscopy, a recent addition to the family of super-resolution methods, generates a robust resolution enhancement without reducing the signal level. Here, we introduce quantum image scanning microscopy: combining image scanning microscopy with the measurement of quantum photon correlation allows increasing the resolution of image scanning microscopy up to twofold, four times beyond the diffraction limit. We introduce the Q-ISM principle and obtain super-resolved optical images of a biological sample stained with fluorescent quantum dots using photon antibunching, a quantum effect, as a resolution-enhancing contrast mechanism.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Q-ISM principle of operation.
Fig. 2: Resolving emitters with Q-ISM.
Fig. 3: Q-ISM of labelled microtubule cell samples.
Fig. 4: Resolving power of Q-ISM in the axial dimension.

Data availability

The raw data that support the findings of this study are available in the figshare repository under the name ‘QISM_SoftwareAndData_zip’ and with the identifier


  1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. für Mikroskopische Anat. 9, 413–418 (1873).

    Article  Google Scholar 

  2. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  3. Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  Google Scholar 

  4. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  Google Scholar 

  5. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  6. Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).

    Article  ADS  Google Scholar 

  7. Schwartz, O. et al. Superresolution microscopy with quantum emitters. Nano Lett. 13, 5832–5836 (2013).

    Article  ADS  Google Scholar 

  8. Gatto Monticone, D. et al. Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics. Phys. Rev. Lett. 113, 143602 (2014).

    Article  ADS  Google Scholar 

  9. Tsang, M. Quantum limits to optical point-source localization. Optica 2, 646–653 (2015).

    Article  Google Scholar 

  10. Tsang, M., Nair, R. & Lu, X.-M. Quantum theory of superresolution for two incoherent optical point sources. Phys. Rev. X 6, 031033 (2016).

    Google Scholar 

  11. Classen, A., von Zanthier, J., Scully, M. O. & Agarwal, G. S. Superresolution via structured illumination quantum correlation microscopy. Optica 4, 580 (2017).

    Article  Google Scholar 

  12. Israel, Y., Tenne, R., Oron, D. & Silberberg, Y. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat. Commun. 8, 14786 (2017).

    Article  ADS  Google Scholar 

  13. Aßmann, M. Quantum-optically enhanced STORM (QUEST) for multi-emitter localization. Sci. Rep. 8, 7829 (2018).

    Article  ADS  Google Scholar 

  14. Cui, J.-M., Sun, F.-W., Chen, X.-D., Gong, Z.-J. & Guo, G.-C. Quantum statistical imaging of particles without restriction of the diffraction limit. Phys. Rev. Lett. 110, 153901 (2013).

    Article  ADS  Google Scholar 

  15. Sheppard, C. J. R. Superresolution in confocal imaging. Optik 80, 53–54 (1988).

    Google Scholar 

  16. Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 198101 (2010).

    Article  ADS  Google Scholar 

  17. Rego, E. H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl Acad. Sci. USA 109, E135–E143 (2012).

    Article  Google Scholar 

  18. Blom, H. & Widengren, J. Stimulated emission depletion microscopy. Chem. Rev. 117, 7377–7427 (2017).

    Article  Google Scholar 

  19. Sheppard, C. J. R., Mehta, S. B. & Heintzmann, R. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett. 38, 2889 (2013).

    Article  ADS  Google Scholar 

  20. Gu, M. & Sheppard, C. J. R. Confocal fluorescent microscopy with a finite-sized circular detector. J. Opt. Soc. Am. A. 9, 151 (1992).

    Article  ADS  Google Scholar 

  21. Ward, E. N. & Pal, R. Image scanning microscopy: an overview. J. Microsc. 266, 221–228 (2017).

    Article  Google Scholar 

  22. York, A. G. et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods 10, 1122–1126 (2013).

    Article  Google Scholar 

  23. Roth, S., Sheppard, C. J., Wicker, K. & Heintzmann, R. Optical photon reassignment microscopy (OPRA). Opt. Nanoscopy 2, 5 (2013).

    Article  Google Scholar 

  24. De Luca, G. M. R. et al. Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express 4, 2644–2656 (2013).

    Article  Google Scholar 

  25. Laporte, G. P. J., Stasio, N., Sheppard, C. J. R. & Psaltis, D. Resolution enhancement in nonlinear scanning microscopy through post-detection digital computation. Optica 1, 455 (2014).

    Article  Google Scholar 

  26. Gregor, I. et al. Rapid nonlinear image scanning microscopy. Nat. Methods 14, 1087–1089 (2017).

    Article  Google Scholar 

  27. Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  28. Gerry, C. C. & Knight, P. L. Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005).

  29. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    Article  ADS  Google Scholar 

  30. Basche’, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antihunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).

    Article  ADS  Google Scholar 

  31. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  32. Brouri, R., Beveratos, A., Poizat, J.-P. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000).

    Article  ADS  Google Scholar 

  33. Grußmayer, K. S. & Herten, D.-P. Time-resolved molecule counting by photon statistics across the visible spectrum. Phys. Chem. Chem. Phys. 19, 8962–8969 (2017).

    Article  Google Scholar 

  34. Roider, C., Ritsch-Marte, M. & Jesacher, A. High-resolution confocal Raman microscopy using pixel reassignment. Opt. Lett. 41, 3825–3828 (2016).

    Article  ADS  Google Scholar 

  35. Portaluppi, D., Conca, E. & Villa, F. 32 x 32 CMOS SPAD imager for gated imaging, photon timing, and photon coincidence. IEEE J. Sel. Top. Quantum Electron. 24, 3800706 (2018).

    Article  Google Scholar 

  36. Castello, M. et al. Image scanning microscopy with single-photon detector array. Preprint at (2018).

  37. Antolovic, I. M., Burri, S., Bruschini, C., Hoebe, R. A. & Charbon, E. SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking. Sci. Rep. 7, 44108 (2017).

    Article  ADS  Google Scholar 

  38. York, A. G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9, 749–754 (2012).

    Article  Google Scholar 

  39. Schwartz, O. et al. Colloidal quantum dots as saturable fluorophores. ACS Nano 6, 8778–8782 (2012).

    Article  Google Scholar 

  40. Sýkora, J. et al. Exploring fluorescence antibunching in solution to determine the stoichiometry of molecular complexes. Anal. Chem. 79, 4040–4049 (2007).

    Article  Google Scholar 

  41. Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited review article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

    Article  ADS  Google Scholar 

  42. Hänninen, P. E., Schrader, M., Soini, E. & Hell, S. W. Two‐photon excitation fluorescence microscopy using a semiconductor laser. Bioimaging 3, 70–75 (1995).

    Article  Google Scholar 

  43. Hell, S. W., Soukka, J. & Hänninen, P. E. Two‐ and multiphoton detection as an imaging mode and means of increasing the resolution in far‐field light microscopy: a study based on photon‐optics. Bioimaging 3, 64–69 (1995).

    Article  Google Scholar 

Download references


The authors thank Y. Ebenstein for the preparation of biological samples and S. Itzhakov for synthesizing the quantum dots used in this work. This work was supported by ERC consolidator grant ColloQuanto, ERC grant QUAMI, the ERC-POC project ‘SFICAM’, the ICore program of the ISF, the Crown Photonics Center and the Israeli ministry of science Tashtiyot program. R.L. and A.K.-P. acknowledge the hospitality of the Weizmann Institute of Science and the support of National Science Centre (Poland) grants nos. 2015/17/D/ST2/03471 and 2015/16/S/ST2/00424, the Polish Ministry of Science and Higher Education, and the Foundation for Polish Science under the FIRST TEAM project ‘Spatiotemporal photon correlation measurements for quantum metrology and super-resolution microscopy’ cofinanced by the European Union under the European Regional Development Fund.

Author information

Authors and Affiliations



R.T., Y.I., Y.S. and D.O. proposed and designed the experiment. R.T., U.R., B.R., Y.I. and R.L. performed the experimental work. R.T., U.R., B.R., A.K.-P. and R.L. performed the data analysis. R.T. wrote the manuscript with significant contributions from all authors.

Corresponding author

Correspondence to Dan Oron.

Ethics declarations

Competing interests

The authors delcare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figures 1–9.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenne, R., Rossman, U., Rephael, B. et al. Super-resolution enhancement by quantum image scanning microscopy. Nature Photon 13, 116–122 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing