Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Megafilament in air formed by self-guided terawatt long-wavelength infrared laser


The diffraction-compensated propagation of high-power laser beams in air could open up new opportunities for atmospheric applications such as remote stand-off detection, long-range projection of high-energy laser pulses and free-space communications. Here, we experimentally demonstrate that a self-guided terawatt picosecond CO2 laser beam forms in air a single centimetre-scale-diameter megafilament that, in comparison with a short-wavelength laser filament, has four orders of magnitude larger cross-section and guides many joules of pulse energy over multiple Rayleigh distances at a clamped intensity of ~1012 W cm–2. We discover that this megafilament arises from the balance between self-focusing, diffraction and defocusing caused by free carriers generated via many-body Coulomb-induced ionization that effectively decrease the molecular polarizability during the long-wavelength laser pulse. Modelling reveals that this guiding scheme may enable transport of high-power picosecond infrared pulses over many kilometres in the 8–14 μm atmospheric transmission window.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental set-up.
Fig. 2: Self-guiding of a picosecond CO2 laser in air.
Fig. 3: Temporal evolution of a picosecond CO2 laser pulse self-guided in air.
Fig. 4: Spectral measurements of a picosecond CO2 laser pulse self-guided in air.
Fig. 5: Simulation results of a CO2 laser pulse self-guiding in air.
Fig. 6: A few-kilometre-long propagation of a picosecond 10.2 μm pulse in the atmosphere.

Data availability

The data that supports the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Laser Beam Propagation in the Atmosphere (ed. Strohbehn, J. W.) Topics in Applied Physics Vol. 25 (Springer, Berlin, Heidelberg, 1978).

  2. Lubin, P. et al. Toward directed energy planetary defense. Opt. Eng. 53, 025103 (2014).

    ADS  Article  Google Scholar 

  3. Daukantas, P. Breakthrough starshot. Opt. Photon. News 28, 26–33 (2017).

    ADS  Article  Google Scholar 

  4. Nicholls, R. W. Wavelength-dependent spectral extinction of atmospheric aerosols. Appl. Opt. 23, 1142–1143 (1984).

    ADS  Article  Google Scholar 

  5. Andrews, L. C. & Phillips, R. L. Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, Bellingham, 1998)

  6. Braun, A. et al. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73–75 (1995).

    ADS  Article  Google Scholar 

  7. Couairon, A. & Mysyrowicz, A. A femtosecond filamentation in transparent media. Phys. Rep. 44, 47–189 (2007).

    ADS  Article  Google Scholar 

  8. Chin, S. L. Femtosecond Laser Filamentation Springer Series on Atomic, Optical and Plasma Physics Vol. 55 (Springer, New York, 2010).

  9. Mitrofanov, A. V. et al. Mid-infrared laser filaments in the atmosphere. Sci. Rep. 5, 8368 (2015).

    Article  Google Scholar 

  10. Shumakova, V. et al. Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances. Opt. Lett. 43, 2185–2188 (2018).

    ADS  Article  Google Scholar 

  11. Mechain, G. et al. Long range self-channeling of infrared laser pulses in air: a new propagation regime without ionization. App. Phys. B 79, 379–382 (2004).

    Article  Google Scholar 

  12. Durand, M. et al. Kilometer range filamentation. Opt. Express 21, 26836–26845 (2013).

    ADS  Article  Google Scholar 

  13. Zhao, X. M., Diels, J.-C., Wang, C. Y. & Elizondo, J. M. Femtosecond ultraviolet laser pulse induced lightning discharges in gases. IEEE J. Quantum. Electron. 31, 599–612 (1995).

    ADS  Article  Google Scholar 

  14. Kartashov, D. et al. Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 86, 033831 (2012).

    ADS  Article  Google Scholar 

  15. Stelmaszczyk, K. et al. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett. 85, 3977–3979 (2004).

    ADS  Article  Google Scholar 

  16. Point, G. et al. Superfilamentation in air. Phys. Rev. Lett. 112, 223902 (2014).

    ADS  Article  Google Scholar 

  17. Chateauneuf, M., Payeur, S., Dubois, J. & Kieffer, J.-C. Microwave guiding in air by a cylindrical filament array waveguide. Appl. Phys. Lett. 92, 091104 (2008).

    ADS  Article  Google Scholar 

  18. Rohwetter, P. et al. Laser-induced water condensation in air. Nat. Photon. 4, 451–456 (2010).

    ADS  Article  Google Scholar 

  19. Geints, Y. E. & Zemlyanov, A. A. Single and multiple filamentation of multi-terawatt CO2 laser pulses in air: numerical simulations. J. Opt. Soc. Am. B 31, 788–797 (2014).

    ADS  Article  Google Scholar 

  20. Panagiotopoulos, P., Schuh, K., Kolesik, M. & Moloney, J. M. Simulations of 10 μm filaments in a realistically modeled atmosphere. J. Opt. Soc. Am. B 33, 2154–2161 (2016).

    ADS  Article  Google Scholar 

  21. Schuh, K., Kolesik, M., Wright, E. M. & Moloney, J. M. Self-channeling of high-power long-wave infrared pulses in atomic gases. Phys. Rev. Lett. 118, 063901 (2017).

    ADS  Article  Google Scholar 

  22. Haberberger, D., Tochitsky, S. & Joshi, C. Fifteen terawatt picosecond CO2 laser system. Opt. Express 18, 17865–17877 (2010).

    ADS  Article  Google Scholar 

  23. Polyanskiy, M. N., Babzien, M. & Pogorelsky, I. V. Chirped-pulse amplification in a CO2 laser. Optica 2, 675–679 (2015).

    Article  Google Scholar 

  24. Polyanskiy, M. N., Pogorelsky, I. V. & Yakimenko, V. Picosecond pulse amplification in isotope CO2 active medium. Opt. Express 19, 7717–7725 (2011).

    ADS  Article  Google Scholar 

  25. Pigeon, J. J., Tochitsky, S. Ya., Welch, E. C. & Joshi, C. Measurements of the nonlinear refractive index of air, N2 and O2 at 10 μm using four-wave mixing. Opt. Lett. 41, 3924–3927 (2016).

    ADS  Article  Google Scholar 

  26. Tochitsky, S. Ya. et al. Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier. Opt. Lett. 26, 813–815 (1995).

    ADS  Article  Google Scholar 

  27. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  28. Raiser, Y. P. Gas Discharge Physics (Springer, New York, 1987)..

  29. Pigeon, J. J., Tochitsky, S. Ya., Welch, E. C. & Joshi, C. Experimental study of the third-order nonlinearity of atomic and molecular gases using 10-μm laser pulses. Phys. Rev. A 97, 043829 (2018).

    ADS  Article  Google Scholar 

  30. Geints, Y. E. & Zemlyanov, A. A. Dynamics of CO2 laser filamentation in air influenced by spectrally selective molecular absorption. Appl. Opt. 53, 5641–5648 (2014).

    ADS  Article  Google Scholar 

  31. Bendtsen, J. The rotational and rotation-vibrational Raman spectra of 14N2, 14N15N, and 15N2. J. Raman Spectrosc. 2, 133–145 (1974).

    ADS  Article  Google Scholar 

  32. Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge University Press, Cambridge, 2012).

  33. Schuh, K., Moloney, J. M. & Koch, S. W. Influence of many-body interactions during the ionization of gases by short intense optical pulses. Phys. Rev. E 89, 033103 (2014).

    ADS  Article  Google Scholar 

  34. Kolesik, M. & Moloney, J. V. Nonlinear optical propagation simulation from Maxwell’s to unidirectional equations. Phys. Rev. E 70, 0366604 (2004).

    ADS  Article  Google Scholar 

  35. Pasenow, B. et al. Nonequilibrium evolution of strong-field anisotropic ionized electrons towards a delayed plasma state. Opt. Express 20, 2310–2318 (2012).

    ADS  Article  Google Scholar 

  36. Gao, X. et al. Picosecond ionization dynamics in femtosecond filaments at high pressure. Phys. Rev. A 95, 013412 (2017).

    ADS  Article  Google Scholar 

  37. Rothman, L. S. et al. The HITRAN 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  38. Couairon, A. et al. Practitioner’s guide to laser pulse propagation models and simulation. Eur. Phys. J. Spec. Top. 199, 5–76 (2011).

    Article  Google Scholar 

  39. Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, USA, 2001).

    MATH  Google Scholar 

  40. Adair, R., Chase, L. L. & Payne, S. A. Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337–3349 (1989).

    ADS  Article  Google Scholar 

Download references


The authors would like acknowledge ATF BNL staff for technical support. S.T. would like to thank Y. Geints (Institute of Atmospheric Optics, Tomsk, Russia) for fruitful discussions of CO2 laser filamentation in the atmosphere. This material is based on work supported by the Air Force Office of Scientific Research under award nos. FA9550-16-1-0139 DEF, FA9550-16-1-0088, FA9550-15-1-0272, Office of Naval Research Multidisciplinary University Research Initiative (MURI) grant no. N00014-17-1-2705, and Department of Energy grant DE-SC0010064.

Author information

Authors and Affiliations



S.T., E.W. and C.J. conceived and designed the experiments. S.T., E.W., M.P. and I.P. carried out the experiments, S.T., E.W., J.P. and C.J. analysed the data, contributed analysis tools and wrote the paper. P.P., M.K., E.M.W., S.W.K. and J.V.M. carried out numerical simulations, developed theory and wrote the paper.

Corresponding author

Correspondence to Sergei Tochitsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional data, analysis and modelling

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tochitsky, S., Welch, E., Polyanskiy, M. et al. Megafilament in air formed by self-guided terawatt long-wavelength infrared laser. Nature Photon 13, 41–46 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing