Review Article | Published:

Integrated microwave photonics

Abstract

Recent advances in photonic integration have propelled microwave photonic technologies to new heights. The ability to interface hybrid material platforms to enhance light–matter interactions has led to the development of ultra-small and high-bandwidth electro-optic modulators, low-noise frequency synthesizers and chip signal processors with orders-of-magnitude enhanced spectral resolution. On the other hand, the maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfigurability similar to electronic devices. Here, we review these recent advances and discuss the impact of these new frontiers for short- and long-term applications in communications and information processing. We also take a look at the future perspectives at the intersection of integrated microwave photonics and other fields including quantum and neuromorphic photonics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Seeds, A. J. & Williams, K. J. Microwave photonics. J. Lightw. Technol. 24, 4628–4641 (2006).

  2. 2.

    Minasian, R. A. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006).

  3. 3.

    Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

  4. 4.

    Yao, J. Microwave photonics. J. Lightw. Technol. 27, 314–335 (2009).

  5. 5.

    Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).

  6. 6.

    Yao, J. P., Zeng, F. & Wang, Q. Photonic generation of ultra-wideband signals. J. Lightw. Technol. 25, 3219–3235 (2007).

  7. 7.

    Khan, M. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2009).

  8. 8.

    Lim, C. et al. Fiber-wireless networks and subsystem technologies. J. Lightw. Technol. 28, 390–405 (2010).

  9. 9.

    Capmany, J., Ortega, B. & Pastor, D. A tutorial on microwave photonic filters. J. Lightw. Technol. 24, 201–229 (2006).

  10. 10.

    Supradeepa, V. R. et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat. Photon. 6, 186–194 (2012).

  11. 11.

    Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).

  12. 12.

    Hecht, J. The bandwidth bottleneck that is throttling the Internet. Nature 536, 139–142 (2016).

  13. 13.

    Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics. IEEE Microw. Mag. 16, 18–45 (2015).

  14. 14.

    Zhuang, L. et al. Low-loss high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing. Opt. Express 19, 23162–23170 (2011).

  15. 15.

    Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).

  16. 16.

    Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).

  17. 17.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  18. 18.

    Haffner, C. et al. Plasmonic organic hybrid modulators—scaling highest speed photonics to the microscale. Proc. IEEE 104, 2362–2379 (2016).

  19. 19.

    Marpaung, D. et al. Low power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica 2, 76–83 (2015).

  20. 20.

    Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K. J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

  21. 21.

    Fandiño, J. S., Muñoz, P., Doménech, D. & Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2016).

  22. 22.

    Smit, M. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).

  23. 23.

    Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

  24. 24.

    Zhang, W. & Yao, J. Silicon-based integrated microwave photonics. IEEE J. Quantum Electron. 52, 0600412 (2016).

  25. 25.

    Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

  26. 26.

    Roeloffzen, C. H. G. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).

  27. 27.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

  28. 28.

    Chang, M. P., Blow, E. C., Lu, M. Z., Sun, J. J. & Prucnal, P. R. Integrated microwave photonic circuit for self-interference cancellation. IEEE Trans. Microw. Theory Tech. 65, 4493–4501 (2017).

  29. 29.

    Roeloffzen, C. G. H. et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).

  30. 30.

    Heck, M. J. R. et al. Hybrid silicon photonic integrated circuit technology. IEEE J. Quantum Electron. 19, 6100117 (2013).

  31. 31.

    Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Lightw. Technol. 34, 20–35 (2016).

  32. 32.

    Hiraki, T. et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photon. 11, 482–485 (2017).

  33. 33.

    Han, J. H. et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photon. 11, 486–490 (2017).

  34. 34.

    Hulme, J. et al. Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V. Opt. Express 25, 2422–2431 (2017).

  35. 35.

    Spencer, D. T. et al. An integrated-photonics optical-frequency synthesizer. Nature 557, 81–85 (2018).

  36. 36.

    Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

  37. 37.

    Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

  38. 38.

    Belt, M., Davenport, M., Bowers, J. & Blumenthal, D. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica 4, 532–536 (2017).

  39. 39.

    Xiong, C., Pernice, W. H. P. & Tang, H. X. Low-loss silicon integrated aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562–3568 (2012).

  40. 40.

    Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

  41. 41.

    Phare, C. T., Daniel Lee, Y.-H., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

  42. 42.

    Capmany, J., Doménech, D. & Muñoz, P. Graphene integrated microwave photonics. J. Lightw. Technol. 32, 3785–3796 (2014).

  43. 43.

    Li, G. L. & Yu, P. K. L. Optical intensity modulators for digital and analog applications. J. Lightw. Technol. 21, 2010–2030 (2003).

  44. 44.

    Bull, J. D. et al. 40 GHz electro-optic polarization modulator for fiber optic communications systems. Proc. SPIE 5577, 133–143 (2004).

  45. 45.

    Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).

  46. 46.

    Wang, C., Zhang, M., Stern, B., Lipson, M. & Loncar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018).

  47. 47.

    Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

  48. 48.

    Rao, A. & Fathpour, S. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron. 24, 3400114 (2018).

  49. 49.

    Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

  50. 50.

    Trajkovic, M. et al. 55 GHz EAM bandwidth and beyond in InP active-passive photonic integration platform. In Proc. CLEO Paper JTh5A.8 (OSA, 2018).

  51. 51.

    Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9, 3444 (2018).

  52. 52.

    Koos, C. et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J. Lightw. Technol. 34, 256–268 (2016).

  53. 53.

    Haffner, C. et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photon. 9, 525–528 (2015).

  54. 54.

    Ayata, M. et al. High-speed plasmonic modulator in a single metal layer. Science 358, 630–632 (2017).

  55. 55.

    Hoessbacher, C. et al. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt. Express 25, 1762–1768 (2017).

  56. 56.

    Salamin, Y. et al. Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna. Nano Lett. 15, 8342–8346 (2015).

  57. 57.

    Chen, L., Chen, J., Nagy, J. & Reano, R. M. Highly linear ring modulator from hybrid silicon and lithium niobate. Opt. Express 23, 13255–13264 (2015).

  58. 58.

    Zhang, C., Morton, P. A., Khurgin, J. B., Peters, J. D. & Bowers, J. E. Highly linear heterogeneous-integrated Mach–Zehnder interferometer modulators on Si. Opt. Express 24, 19040–19047 (2016).

  59. 59.

    Zhang, C., Morton, P. A., Khurgin, J. B., Peters, J. D. & Bowers, J. E. Ultralinear heterogeneously integrated ring assisted Mach–Zehnder interferometer modulator on silicon. Optica 3, 1483–1488 (2016).

  60. 60.

    Maleki, L. Sources: the optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).

  61. 61.

    Tang, J. et al. Integrated optoelectronic oscillator. Opt. Express 26, 12257–12265 (2018).

  62. 62.

    Zhang, W. & Yao, J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightw. Technol. 36, 4655–4663 (2018).

  63. 63.

    Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

  64. 64.

    Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

  65. 65.

    Xuan, Y. et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 3, 1171–1180 (2016).

  66. 66.

    Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

  67. 67.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

  68. 68.

    Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

  69. 69.

    Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

  70. 70.

    Sancho, J. et al. Integrable microwave filter based on a photonic crystal delay line. Nat. Commun. 3, 1075 (2012).

  71. 71.

    Xue, X. et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J. Lightw. Technol. 32, 3557–3565 (2014).

  72. 72.

    Wu, J. et al. RF photonics: an optical microcombs’ perspective. IEEE J. Sel. Top. Quantum Electron. 24, 6101020 (2018).

  73. 73.

    Metcalf, A. J. et al. Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering. Opt. Express 24, 23925–23940 (2016).

  74. 74.

    Zhang, W. & Yao, J. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter. Opt. Lett. 43, 3622–3625 (2018).

  75. 75.

    Choudhary, A. et al. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters. Opt. Lett. 41, 436–439 (2016).

  76. 76.

    Aryanfar, I. et al. Signal interference RF photonic bandstop filter. Opt. Express 24, 14995–15004 (2016).

  77. 77.

    Morrison, B. et al. Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering. Opt. Commun. 313, 85–89 (2014).

  78. 78.

    Eggleton, B. J., Poulton, C. G. & Pant, R. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon. 5, 536–587 (2013).

  79. 79.

    Pant, R. et al. On-chip stimulated Brillouin scattering. Opt. Express 19, 8285–8290 (2011).

  80. 80.

    Choudhary, A. et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J. Lightw. Technol. 35, 846–854 (2017).

  81. 81.

    Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun. 4, 1944 (2013).

  82. 82.

    Laer, R. V., Kuyken, B., Thourhout, D. V. & Baets, R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photon. 9, 199–203 (2015).

  83. 83.

    Kittlaus, E. A., Shin, H. & Rakich, P. T. Large Brillouin amplification in silicon. Nat. Photon. 10, 463–467 (2016).

  84. 84.

    Morrison, B. et al. Compact Brillouin devices through hybrid integration on silicon. Optica 4, 847–854 (2017).

  85. 85.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

  86. 86.

    Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).

  87. 87.

    Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

  88. 88.

    Ibrahim, S. et al. Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter. Opt. Express 19, 13245–13256 (2011).

  89. 89.

    Marpaung, D., Chevalier, L., Burla, M. & Roeloffzen, C. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator. Opt. Express 19, 24838–24848 (2011).

  90. 90.

    Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip. Nat. Commun. 6, 5957 (2015).

  91. 91.

    Marpaung, D. On-chip photonic-assisted instantaneous microwave frequency measurement system. IEEE Photon. Technol. Lett. 25, 837–840 (2013).

  92. 92.

    Fandiño, J. S. & Muñoz, P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter. Opt. Lett. 38, 4316–4319 (2013).

  93. 93.

    Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).

  94. 94.

    Zhang, W. & Yao, J. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat. Commun. 9, 1396 (2018).

  95. 95.

    Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).

  96. 96.

    Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: the programmable processor. Nat. Photon. 10, 6–8 (2016).

  97. 97.

    Pérez, D., Gasulla, I., Capmany, J. & Soref, R. A. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016).

  98. 98.

    Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).

  99. 99.

    Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).

  100. 100.

    Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129–136 (2014).

  101. 101.

    Urick, V. J., McKinney, J. D. & Williams, K. J. Fundamentals of Microwave Photonics (John Wiley & Sons, Hoboken, NJ, 2015).

  102. 102.

    Liu, Y., Marpaung, D., Choudhary, A. & Eggleton, B. J. Lossless and high-resolution RF photonic notch filter. Opt. Lett. 41, 5306–5309 (2016).

  103. 103.

    Liu, Y., Hotten, J., Choudhary, A., Eggleton, B. J. & Marpaung, D. All-optimized integrated RF photonic notch filter. Opt. Lett. 42, 4631–4634 (2017).

  104. 104.

    Kim, H. J., Leaird, D. E., Metcalf, A. J. & Weiner, A. M. Comb-based RF photonic filters based on interferometric configuration and balanced detection. J. Lightw. Technol. 32, 3478–3488 (2014).

  105. 105.

    Joshi, H., Sigmarsson, H., Moon, S., Peroulis, D. & Chappell, W. J. High-Q fully reconfigurable tunable bandpass filters. IEEE Trans. Microw. Theory Tech. 57, 3525–3533 (2009).

  106. 106.

    Fan, Y. et al. 290 Hz intrinsic linewidth from an integrated optical chip based widely tunable InP-Si3N4 hybrid laser. In Proc. CLEO Paper JTh5C.9 (OSA, 2017).

  107. 107.

    Morton, P., Morton, M. & Morton, S. Ultra low phase noise, high power, hybrid lasers for RF mixing and optical sensing applications. In Proc. IEEE Avionics and Vehicle Fiber-Optics Photon. Conf. (AVFOP) Paper TuB.1 (IEEE, 2017).

  108. 108.

    Beling, A., Xie, X. & Campbell, J. C. High-power, high-linearity photodiodes. Optica 3, 328–338 (2016).

  109. 109.

    Liu, Y., Marpaung, D., Choudhary, A., Hotten, J. & Eggleton, B. J. Link performance optimization of chip-based Si3N4 microwave photonic filters. J. Lightw. Technol. 36, 4361–4370 (2018).

  110. 110.

    Marpaung, D., Pagani, M., Morrison, B. & Eggleton, B. J. Nonlinear integrated microwave photonics. J. Lightw. Technol. 32, 3421–3427 (2014).

  111. 111.

    Balram, K. C., Davanço, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon. 10, 346–352 (2016).

  112. 112.

    Kittlaus, E. A. RF-photonic filters via on-chip photonic–phononic emit–receive operations. J. Lightw. Technol. 36, 2803–2809 (2018).

  113. 113.

    Fang, K., Matheny, M. H., Luan, X. & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photon. 10, 489–496 (2016).

  114. 114.

    Perez, D. et al. Silicon photonics rectangular universal interferometer. Laser Photon. Rev. 11, 1700219 (2017).

  115. 115.

    Wen, H. et al. Few-mode fibre-optic microwave photonic links. Light Sci. Appl. 6, e17021 (2017).

  116. 116.

    Annoni, A. et al. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017).

  117. 117.

    Prucnal, P. R. & Shastri, B. J. Neuromorphic Photonics (CRC Press, Boca Raton, 2017).

  118. 118.

    Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

  119. 119.

    Cheng, Z., Rios, C., Pernice, W. H., Wright, C. D. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017).

  120. 120.

    Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

  121. 121.

    Feng, L., Wong, Z. J., Ma, R. M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

  122. 122.

    Hodaei, H., Miri, M. A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014).

  123. 123.

    Liu, W. et al. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun. 8, 15389 (2017).

  124. 124.

    Zhang, J. & Yao, J. Parity-time symmetric optoelectronic oscillator. Sci. Adv. 4, eaar6782 (2018).

  125. 125.

    Liu, Y. et al. Observation of parity-time symmetry in microwave photonics. Light Sci. Appl. 7, 38 (2018).

Download references

Acknowledgements

D.M. wishes to acknowledge funding from NWO-TTW Vidi 15702. The work of J.Y. is supported by the Natural Sciences and Engineering Research Council of Canada. J.C. wishes to acknowledge funding from ERC ADG-2016-741415 UMWP-CHIP, GVA PROMETEO 2017/103 and COST CA16220 EUIMWP.

Author information

Competing interests

The authors declare no competing interests.

Correspondence to David Marpaung.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Overview of recent advances and technologies in integrated MWP.
Fig. 2: Advanced optical modulator technologies for MWP.
Fig. 3: Integrated microwave photonic filtering.
Fig. 4: Programmable and general-purpose MWP processors.
Fig. 5: Opportunities for integrated MWP.