Integrated microwave photonics

Abstract

Recent advances in photonic integration have propelled microwave photonic technologies to new heights. The ability to interface hybrid material platforms to enhance light–matter interactions has led to the development of ultra-small and high-bandwidth electro-optic modulators, low-noise frequency synthesizers and chip signal processors with orders-of-magnitude enhanced spectral resolution. On the other hand, the maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfigurability similar to electronic devices. Here, we review these recent advances and discuss the impact of these new frontiers for short- and long-term applications in communications and information processing. We also take a look at the future perspectives at the intersection of integrated microwave photonics and other fields including quantum and neuromorphic photonics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of recent advances and technologies in integrated MWP.
Fig. 2: Advanced optical modulator technologies for MWP.
Fig. 3: Integrated microwave photonic filtering.
Fig. 4: Programmable and general-purpose MWP processors.
Fig. 5: Opportunities for integrated MWP.

References

  1. 1.

    Seeds, A. J. & Williams, K. J. Microwave photonics. J. Lightw. Technol. 24, 4628–4641 (2006).

    ADS  Google Scholar 

  2. 2.

    Minasian, R. A. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006).

    ADS  Google Scholar 

  3. 3.

    Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

    ADS  Google Scholar 

  4. 4.

    Yao, J. Microwave photonics. J. Lightw. Technol. 27, 314–335 (2009).

    ADS  Google Scholar 

  5. 5.

    Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).

    ADS  Google Scholar 

  6. 6.

    Yao, J. P., Zeng, F. & Wang, Q. Photonic generation of ultra-wideband signals. J. Lightw. Technol. 25, 3219–3235 (2007).

    ADS  Google Scholar 

  7. 7.

    Khan, M. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2009).

    ADS  Google Scholar 

  8. 8.

    Lim, C. et al. Fiber-wireless networks and subsystem technologies. J. Lightw. Technol. 28, 390–405 (2010).

    ADS  Google Scholar 

  9. 9.

    Capmany, J., Ortega, B. & Pastor, D. A tutorial on microwave photonic filters. J. Lightw. Technol. 24, 201–229 (2006).

    ADS  Google Scholar 

  10. 10.

    Supradeepa, V. R. et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat. Photon. 6, 186–194 (2012).

    ADS  Google Scholar 

  11. 11.

    Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).

    ADS  Google Scholar 

  12. 12.

    Hecht, J. The bandwidth bottleneck that is throttling the Internet. Nature 536, 139–142 (2016).

    ADS  Google Scholar 

  13. 13.

    Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics. IEEE Microw. Mag. 16, 18–45 (2015).

    Google Scholar 

  14. 14.

    Zhuang, L. et al. Low-loss high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing. Opt. Express 19, 23162–23170 (2011).

    ADS  Google Scholar 

  15. 15.

    Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).

    ADS  Google Scholar 

  16. 16.

    Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).

    ADS  Google Scholar 

  17. 17.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Google Scholar 

  18. 18.

    Haffner, C. et al. Plasmonic organic hybrid modulators—scaling highest speed photonics to the microscale. Proc. IEEE 104, 2362–2379 (2016).

    Google Scholar 

  19. 19.

    Marpaung, D. et al. Low power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica 2, 76–83 (2015).

    Google Scholar 

  20. 20.

    Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K. J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

    Google Scholar 

  21. 21.

    Fandiño, J. S., Muñoz, P., Doménech, D. & Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2016).

    ADS  Google Scholar 

  22. 22.

    Smit, M. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).

    ADS  Google Scholar 

  23. 23.

    Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    ADS  Google Scholar 

  24. 24.

    Zhang, W. & Yao, J. Silicon-based integrated microwave photonics. IEEE J. Quantum Electron. 52, 0600412 (2016).

    Google Scholar 

  25. 25.

    Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

    ADS  Google Scholar 

  26. 26.

    Roeloffzen, C. H. G. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).

    ADS  Google Scholar 

  27. 27.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    ADS  Google Scholar 

  28. 28.

    Chang, M. P., Blow, E. C., Lu, M. Z., Sun, J. J. & Prucnal, P. R. Integrated microwave photonic circuit for self-interference cancellation. IEEE Trans. Microw. Theory Tech. 65, 4493–4501 (2017).

    ADS  Google Scholar 

  29. 29.

    Roeloffzen, C. G. H. et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).

    Google Scholar 

  30. 30.

    Heck, M. J. R. et al. Hybrid silicon photonic integrated circuit technology. IEEE J. Quantum Electron. 19, 6100117 (2013).

    Google Scholar 

  31. 31.

    Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Lightw. Technol. 34, 20–35 (2016).

    ADS  Google Scholar 

  32. 32.

    Hiraki, T. et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photon. 11, 482–485 (2017).

    Google Scholar 

  33. 33.

    Han, J. H. et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photon. 11, 486–490 (2017).

    Google Scholar 

  34. 34.

    Hulme, J. et al. Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V. Opt. Express 25, 2422–2431 (2017).

    ADS  Google Scholar 

  35. 35.

    Spencer, D. T. et al. An integrated-photonics optical-frequency synthesizer. Nature 557, 81–85 (2018).

    ADS  Google Scholar 

  36. 36.

    Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    ADS  Google Scholar 

  37. 37.

    Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

    ADS  Google Scholar 

  38. 38.

    Belt, M., Davenport, M., Bowers, J. & Blumenthal, D. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica 4, 532–536 (2017).

    Google Scholar 

  39. 39.

    Xiong, C., Pernice, W. H. P. & Tang, H. X. Low-loss silicon integrated aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562–3568 (2012).

    ADS  Google Scholar 

  40. 40.

    Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    Google Scholar 

  41. 41.

    Phare, C. T., Daniel Lee, Y.-H., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

    ADS  Google Scholar 

  42. 42.

    Capmany, J., Doménech, D. & Muñoz, P. Graphene integrated microwave photonics. J. Lightw. Technol. 32, 3785–3796 (2014).

    ADS  Google Scholar 

  43. 43.

    Li, G. L. & Yu, P. K. L. Optical intensity modulators for digital and analog applications. J. Lightw. Technol. 21, 2010–2030 (2003).

    ADS  Google Scholar 

  44. 44.

    Bull, J. D. et al. 40 GHz electro-optic polarization modulator for fiber optic communications systems. Proc. SPIE 5577, 133–143 (2004).

    Google Scholar 

  45. 45.

    Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).

    ADS  Google Scholar 

  46. 46.

    Wang, C., Zhang, M., Stern, B., Lipson, M. & Loncar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018).

    ADS  Google Scholar 

  47. 47.

    Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    ADS  Google Scholar 

  48. 48.

    Rao, A. & Fathpour, S. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron. 24, 3400114 (2018).

    Google Scholar 

  49. 49.

    Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    ADS  Google Scholar 

  50. 50.

    Trajkovic, M. et al. 55 GHz EAM bandwidth and beyond in InP active-passive photonic integration platform. In Proc. CLEO Paper JTh5A.8 (OSA, 2018).

  51. 51.

    Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9, 3444 (2018).

    ADS  Google Scholar 

  52. 52.

    Koos, C. et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J. Lightw. Technol. 34, 256–268 (2016).

    ADS  Google Scholar 

  53. 53.

    Haffner, C. et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photon. 9, 525–528 (2015).

    ADS  Google Scholar 

  54. 54.

    Ayata, M. et al. High-speed plasmonic modulator in a single metal layer. Science 358, 630–632 (2017).

    ADS  Google Scholar 

  55. 55.

    Hoessbacher, C. et al. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt. Express 25, 1762–1768 (2017).

    ADS  Google Scholar 

  56. 56.

    Salamin, Y. et al. Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna. Nano Lett. 15, 8342–8346 (2015).

    ADS  Google Scholar 

  57. 57.

    Chen, L., Chen, J., Nagy, J. & Reano, R. M. Highly linear ring modulator from hybrid silicon and lithium niobate. Opt. Express 23, 13255–13264 (2015).

    ADS  Google Scholar 

  58. 58.

    Zhang, C., Morton, P. A., Khurgin, J. B., Peters, J. D. & Bowers, J. E. Highly linear heterogeneous-integrated Mach–Zehnder interferometer modulators on Si. Opt. Express 24, 19040–19047 (2016).

    ADS  Google Scholar 

  59. 59.

    Zhang, C., Morton, P. A., Khurgin, J. B., Peters, J. D. & Bowers, J. E. Ultralinear heterogeneously integrated ring assisted Mach–Zehnder interferometer modulator on silicon. Optica 3, 1483–1488 (2016).

    Google Scholar 

  60. 60.

    Maleki, L. Sources: the optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).

    ADS  Google Scholar 

  61. 61.

    Tang, J. et al. Integrated optoelectronic oscillator. Opt. Express 26, 12257–12265 (2018).

    ADS  Google Scholar 

  62. 62.

    Zhang, W. & Yao, J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightw. Technol. 36, 4655–4663 (2018).

    ADS  Google Scholar 

  63. 63.

    Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

    ADS  Google Scholar 

  64. 64.

    Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    Google Scholar 

  65. 65.

    Xuan, Y. et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 3, 1171–1180 (2016).

    Google Scholar 

  66. 66.

    Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    ADS  Google Scholar 

  67. 67.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Google Scholar 

  68. 68.

    Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Google Scholar 

  69. 69.

    Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

    ADS  Google Scholar 

  70. 70.

    Sancho, J. et al. Integrable microwave filter based on a photonic crystal delay line. Nat. Commun. 3, 1075 (2012).

    Google Scholar 

  71. 71.

    Xue, X. et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J. Lightw. Technol. 32, 3557–3565 (2014).

    ADS  Google Scholar 

  72. 72.

    Wu, J. et al. RF photonics: an optical microcombs’ perspective. IEEE J. Sel. Top. Quantum Electron. 24, 6101020 (2018).

    Google Scholar 

  73. 73.

    Metcalf, A. J. et al. Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering. Opt. Express 24, 23925–23940 (2016).

    ADS  Google Scholar 

  74. 74.

    Zhang, W. & Yao, J. On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter. Opt. Lett. 43, 3622–3625 (2018).

    ADS  Google Scholar 

  75. 75.

    Choudhary, A. et al. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters. Opt. Lett. 41, 436–439 (2016).

    ADS  Google Scholar 

  76. 76.

    Aryanfar, I. et al. Signal interference RF photonic bandstop filter. Opt. Express 24, 14995–15004 (2016).

    ADS  Google Scholar 

  77. 77.

    Morrison, B. et al. Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering. Opt. Commun. 313, 85–89 (2014).

    ADS  Google Scholar 

  78. 78.

    Eggleton, B. J., Poulton, C. G. & Pant, R. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon. 5, 536–587 (2013).

    Google Scholar 

  79. 79.

    Pant, R. et al. On-chip stimulated Brillouin scattering. Opt. Express 19, 8285–8290 (2011).

    ADS  Google Scholar 

  80. 80.

    Choudhary, A. et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J. Lightw. Technol. 35, 846–854 (2017).

    ADS  Google Scholar 

  81. 81.

    Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun. 4, 1944 (2013).

    Google Scholar 

  82. 82.

    Laer, R. V., Kuyken, B., Thourhout, D. V. & Baets, R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photon. 9, 199–203 (2015).

    ADS  Google Scholar 

  83. 83.

    Kittlaus, E. A., Shin, H. & Rakich, P. T. Large Brillouin amplification in silicon. Nat. Photon. 10, 463–467 (2016).

    ADS  Google Scholar 

  84. 84.

    Morrison, B. et al. Compact Brillouin devices through hybrid integration on silicon. Optica 4, 847–854 (2017).

    Google Scholar 

  85. 85.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    MathSciNet  MATH  Google Scholar 

  86. 86.

    Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).

    ADS  Google Scholar 

  87. 87.

    Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    ADS  MathSciNet  Google Scholar 

  88. 88.

    Ibrahim, S. et al. Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter. Opt. Express 19, 13245–13256 (2011).

    ADS  Google Scholar 

  89. 89.

    Marpaung, D., Chevalier, L., Burla, M. & Roeloffzen, C. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator. Opt. Express 19, 24838–24848 (2011).

    ADS  Google Scholar 

  90. 90.

    Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon chip. Nat. Commun. 6, 5957 (2015).

    Google Scholar 

  91. 91.

    Marpaung, D. On-chip photonic-assisted instantaneous microwave frequency measurement system. IEEE Photon. Technol. Lett. 25, 837–840 (2013).

    ADS  Google Scholar 

  92. 92.

    Fandiño, J. S. & Muñoz, P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter. Opt. Lett. 38, 4316–4319 (2013).

    ADS  Google Scholar 

  93. 93.

    Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).

    ADS  Google Scholar 

  94. 94.

    Zhang, W. & Yao, J. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat. Commun. 9, 1396 (2018).

    ADS  Google Scholar 

  95. 95.

    Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).

    ADS  Google Scholar 

  96. 96.

    Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: the programmable processor. Nat. Photon. 10, 6–8 (2016).

    ADS  Google Scholar 

  97. 97.

    Pérez, D., Gasulla, I., Capmany, J. & Soref, R. A. Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016).

    ADS  Google Scholar 

  98. 98.

    Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).

    ADS  Google Scholar 

  99. 99.

    Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).

    Google Scholar 

  100. 100.

    Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129–136 (2014).

    Google Scholar 

  101. 101.

    Urick, V. J., McKinney, J. D. & Williams, K. J. Fundamentals of Microwave Photonics (John Wiley & Sons, Hoboken, NJ, 2015).

  102. 102.

    Liu, Y., Marpaung, D., Choudhary, A. & Eggleton, B. J. Lossless and high-resolution RF photonic notch filter. Opt. Lett. 41, 5306–5309 (2016).

    ADS  Google Scholar 

  103. 103.

    Liu, Y., Hotten, J., Choudhary, A., Eggleton, B. J. & Marpaung, D. All-optimized integrated RF photonic notch filter. Opt. Lett. 42, 4631–4634 (2017).

    ADS  Google Scholar 

  104. 104.

    Kim, H. J., Leaird, D. E., Metcalf, A. J. & Weiner, A. M. Comb-based RF photonic filters based on interferometric configuration and balanced detection. J. Lightw. Technol. 32, 3478–3488 (2014).

    ADS  Google Scholar 

  105. 105.

    Joshi, H., Sigmarsson, H., Moon, S., Peroulis, D. & Chappell, W. J. High-Q fully reconfigurable tunable bandpass filters. IEEE Trans. Microw. Theory Tech. 57, 3525–3533 (2009).

    ADS  Google Scholar 

  106. 106.

    Fan, Y. et al. 290 Hz intrinsic linewidth from an integrated optical chip based widely tunable InP-Si3N4 hybrid laser. In Proc. CLEO Paper JTh5C.9 (OSA, 2017).

  107. 107.

    Morton, P., Morton, M. & Morton, S. Ultra low phase noise, high power, hybrid lasers for RF mixing and optical sensing applications. In Proc. IEEE Avionics and Vehicle Fiber-Optics Photon. Conf. (AVFOP) Paper TuB.1 (IEEE, 2017).

  108. 108.

    Beling, A., Xie, X. & Campbell, J. C. High-power, high-linearity photodiodes. Optica 3, 328–338 (2016).

    Google Scholar 

  109. 109.

    Liu, Y., Marpaung, D., Choudhary, A., Hotten, J. & Eggleton, B. J. Link performance optimization of chip-based Si3N4 microwave photonic filters. J. Lightw. Technol. 36, 4361–4370 (2018).

    ADS  Google Scholar 

  110. 110.

    Marpaung, D., Pagani, M., Morrison, B. & Eggleton, B. J. Nonlinear integrated microwave photonics. J. Lightw. Technol. 32, 3421–3427 (2014).

    ADS  Google Scholar 

  111. 111.

    Balram, K. C., Davanço, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon. 10, 346–352 (2016).

    ADS  Google Scholar 

  112. 112.

    Kittlaus, E. A. RF-photonic filters via on-chip photonic–phononic emit–receive operations. J. Lightw. Technol. 36, 2803–2809 (2018).

    ADS  Google Scholar 

  113. 113.

    Fang, K., Matheny, M. H., Luan, X. & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photon. 10, 489–496 (2016).

    ADS  Google Scholar 

  114. 114.

    Perez, D. et al. Silicon photonics rectangular universal interferometer. Laser Photon. Rev. 11, 1700219 (2017).

    ADS  Google Scholar 

  115. 115.

    Wen, H. et al. Few-mode fibre-optic microwave photonic links. Light Sci. Appl. 6, e17021 (2017).

    Google Scholar 

  116. 116.

    Annoni, A. et al. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017).

    Google Scholar 

  117. 117.

    Prucnal, P. R. & Shastri, B. J. Neuromorphic Photonics (CRC Press, Boca Raton, 2017).

    Google Scholar 

  118. 118.

    Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    ADS  Google Scholar 

  119. 119.

    Cheng, Z., Rios, C., Pernice, W. H., Wright, C. D. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017).

    ADS  Google Scholar 

  120. 120.

    Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

    ADS  Google Scholar 

  121. 121.

    Feng, L., Wong, Z. J., Ma, R. M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    ADS  Google Scholar 

  122. 122.

    Hodaei, H., Miri, M. A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014).

    ADS  Google Scholar 

  123. 123.

    Liu, W. et al. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun. 8, 15389 (2017).

    ADS  Google Scholar 

  124. 124.

    Zhang, J. & Yao, J. Parity-time symmetric optoelectronic oscillator. Sci. Adv. 4, eaar6782 (2018).

    ADS  Google Scholar 

  125. 125.

    Liu, Y. et al. Observation of parity-time symmetry in microwave photonics. Light Sci. Appl. 7, 38 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

D.M. wishes to acknowledge funding from NWO-TTW Vidi 15702. The work of J.Y. is supported by the Natural Sciences and Engineering Research Council of Canada. J.C. wishes to acknowledge funding from ERC ADG-2016-741415 UMWP-CHIP, GVA PROMETEO 2017/103 and COST CA16220 EUIMWP.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Marpaung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nature Photon 13, 80–90 (2019). https://doi.org/10.1038/s41566-018-0310-5

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing