A microphotonic astrocomb


Earth-like planets, dark energy and variability of fundamental physical constants can be discovered by observing wavelength shifts in the optical spectra of astronomical objects1,2,3,4,5. These wavelength shifts are so tiny that exquisitely accurate and precise wavelength calibration of astronomical spectrometers is required. Laser frequency combs, broadband spectra of laser lines with absolutely known optical frequencies, are uniquely suited for this purpose6,7,8,9,10,11,12,13, provided their lines are resolved by the spectrometer. Generating such astronomical laser frequency combs (‘astrocombs’) remains challenging. Here, a microphotonic astrocomb is demonstrated via temporal dissipative Kerr solitons14,15,16 in photonic-chip-based silicon nitride microresonators17, directly providing a spurious-free spectrum of resolvable calibration lines. Sub-harmonically driven by temporally structured light18, the astrocomb is stabilized to a frequency standard, resulting in absolute calibration with a precision of 25 cm s–1 (radial velocity equivalent), relevant for Earth-like planet detection and cosmological research. The microphotonic technology can be extended in spectral span17,19,20,21,22,23,24, further boosting the calibration precision.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Microresonator-based astrocomb generation and set-up for astronomical spectrometer calibration.
Fig. 2: Spectrometer raw data.
Fig. 3: Results of microresonator-based calibration.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).

    ADS  Article  Google Scholar 

  2. 2.

    Lovis, C. et al. An extrasolar planetary system with three Neptune-mass planets. Nature 441, 305–309 (2006).

    ADS  Article  Google Scholar 

  3. 3.

    Uzan, J.-P. The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75, 403–455 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Murphy, M. T. et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. R. Astron. Soc. 380, 839–847 (2007).

    ADS  Article  Google Scholar 

  5. 5.

    Liske, J. et al. Cosmic dynamics in the era of Extremely Large Telescopes. Mon. Not. R. Astron. Soc. 386, 1192–1218 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 321, 1335–1337 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    Li, C.-H. et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s–1. Nature 452, 610–612 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    Wilken, T. et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature 485, 611–614 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Ycas, G. G. et al. Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. Opt. Express 20, 6631–6643 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Glenday, A. et al. Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph. Opt. Express 2, 250–254 (2015).

    Google Scholar 

  11. 11.

    Yi, X. et al. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy. Nat. Commun. 7, 10436 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    McCracken, R. et al. Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm. Opt. Express 25, 6450–6460 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    McCracken, R. A., Charsley, J. M. & Reid, D. T. A decade of astrocombs: recent advances in frequency combs for astronomy [Invited]. Opt. Express 25, 15058 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Kippenberg, T. J., Lipson, M., Gaeta, A. & Gorodetsky, M. G. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  17. 17.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Article  Google Scholar 

  19. 19.

    Del’Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2016).

    Article  Google Scholar 

  23. 23.

    Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article  Google Scholar 

  24. 24.

    Lee, S. H. et al. Towards visible soliton microcomb generation. Nat. Commun. 8, 1295 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    ADS  Article  Google Scholar 

  26. 26.

    Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    ADS  Article  Google Scholar 

  27. 27.

    Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Article  Google Scholar 

  28. 28.

    Cundiff, S. T. & Ye, J. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    ADS  Article  Google Scholar 

  29. 29.

    Chang, G., Li, C.-H., Phillips, D. F., Walsworth, R. L. & Kärtner, F. X. Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers. Opt. Express 18, 12736–12747 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    Chang, G. et al. Optimization of filtering schemes for broadband astro-combs. Opt. Express 20, 24987–25013 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    Probst, R. A. et al. Nonlinear amplification of side-modes in frequency combs. Opt. Express 21, 11670–11687 (2013).

    ADS  Article  Google Scholar 

  32. 32.

    Beha, K., Cole, D. C., Del’Haye, P., Coillet, A. & Diddams, S. A. Electronic synthesis of light. Optica 4, 406–411 (2017).

    Article  Google Scholar 

  33. 33.

    Torres-Company, V. & Weiner, A. M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon. Rev. 8, 368–393 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Article  Google Scholar 

  35. 35.

    Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    ADS  Article  Google Scholar 

  36. 36.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Article  Google Scholar 

  37. 37.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Grudinin, I. S. et al. High-contrast Kerr frequency combs. Optica 4, 434–437 (2017).

    Article  Google Scholar 

  39. 39.

    Cole, D. C., Lamb, E. S., Haye, P. D., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Joshi, C. et al. Thermally controlled comb generation and soliton mode-locking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    ADS  Article  Google Scholar 

  41. 41.

    Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

    ADS  Article  Google Scholar 

  42. 42.

    Pavlov, N. G. et al. Soliton dual frequency combs in crystalline microresonators. Opt. Lett. 42, 514–517 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Weiner, A. M. Cavity solitons come of age. Nat. Photon. 11, 533–535 (2017).

    Article  Google Scholar 

  44. 44.

    Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

    ADS  Article  Google Scholar 

  45. 45.

    Pfeiffer, M. H. P. et al. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016).

    Article  Google Scholar 

  46. 46.

    Pfeiffer, M. H. P. et al. Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quantum Electron. 24, 6101411 (2018).

    Article  Google Scholar 

  47. 47.

    Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    ADS  Article  Google Scholar 

  48. 48.

    Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    ADS  Article  Google Scholar 

  49. 49.

    Baudrand, J. & Walker, G. A. H. Modal noise in high-resolution, fiber-fed spectra: a study and simple cure. Publ. Astron. Soc. Pac. 113, 851–858 (2001).

    ADS  Article  Google Scholar 

  50. 50.

    Oliva, E. et al. The GIANO spectrometer: towards its first light at the TNG. In Proc. SPIE 8446, 84463T (2012).

  51. 51.

    Bouchy, F., Pepe, F. & Queloz, D. Fundamental photon noise limit to radial velocity measurements. Astron. Astrophys. 374, 733–739 (2001).

    ADS  Article  Google Scholar 

  52. 52.

    Redman, S. L., Lawler, J. E., Nave, G., Ramsey, L. W. & Mahadevan, S. The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra. Astrophys. J. 195, 24 (2011).

    ADS  Article  Google Scholar 

  53. 53.

    Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. https://doi.org/10.1038/s41566-018-0312-3 (2018).

Download references


This work was supported by the Swiss National Science Foundation (grant nos. 166108, 16864, 165933), the NCCR-PlanetS and NCCR-PlanetS Technology Platform, the NCCR-QSIT (51NF40-160591), the Canton of Neuchatel and the INAF Progetto Premiale WOW. T.J.K. acknowledges additional support by the Air Force Office of Scientific Research, Air Force Material Command, USAF under award no. FA9550-15-1-0099, and the Defense Advanced Research Projects Agency (DARPA), Defense Sciences Office (DSO) under contract no. HR0011-15-C-0055. All samples were fabricated in the Center for Micro-Nanotechnology CMI at EPFL. D. F. Phillips and the Havard-Smithsonian Center for Astrophysics’ astrocomb team are acknowledged for providing the GPS-disciplined atomic clock.

Author information




E.O., S.K., S.L. and T.H. designed and implemented the microphotonic astrocomb. E.O., M.R., A.H. and T.H. performed the experiment and analysed the data. M.H.A., J.L., M.G. and T.J.K. designed, fabricated and provided the microresonator. B.C., F.W., F.P. and F.B. designed and implemented the light-coupling interface to the spectrometer. M.C., A.G. and E.M. provided critical support in connecting the astrocomb to the spectrometer as well as spectrometer operation. T.H. conceived and supervised the work. All authors participated in writing the manuscript.

Corresponding author

Correspondence to Tobias Herr.

Ethics declarations

Competing interests

E.O., S.L. and T.H. are inventors in a patent application concerning driving a microresonator with temporally structured light that has been filed by CSEM. T.H. and T.J.K. are co-inventors in a patent application in the technical field. T.J.K. is co-inventor of patents owned by the Max-Planck Society and EPFL in the technical field. M.G. and T.J.K. are co-founders of Ligentec, a start-up company that is engaged in making Si3N4 nonlinear photonic chips available via foundry service.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information on the stability of the microphotonic astrocomb, the GIANO-B spectrometer and the impact of photon noise on spectrometer calibration.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Obrzud, E., Rainer, M., Harutyunyan, A. et al. A microphotonic astrocomb. Nature Photon 13, 31–35 (2019). https://doi.org/10.1038/s41566-018-0309-y

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing