Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Double-blind holography of attosecond pulses

Abstract

A key challenge in attosecond science is the temporal characterization of attosecond pulses that are essential for understanding the evolution of electronic wavefunctions in atoms, molecules and solids1,2,3,4,5,6,7. Current characterization methods, based on nonlinear light–matter interactions, are limited in terms of stability and waveform complexity. Here, we experimentally demonstrate a conceptually new linear and all-optical pulse characterization method, inspired by double-blind holography. Holography is realized by measuring the extreme ultraviolet (XUV) spectra of two unknown attosecond signals and their interference. Assuming a finite pulse duration constraint, we reconstruct the missing spectral phases and characterize the unknown signals in both isolated pulse and double pulse scenarios. This method can be implemented in a wide range of experimental realizations, enabling the study of complex electron dynamics via a single-shot and linear measurement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic description of temporal DBH.
Fig. 2: Gas mixture single-pulse DBH.
Fig. 3: Single-shot double-pulse DBH.

Data availability

The experimental data and computer code used in this paper are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Article  Google Scholar 

  2. 2.

    Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    Diveki, Z. et al. Spectrally resolved multi-channel contributions to the harmonic emission in N2. New J. Phys. 14, 023062 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Nisoli, M., Decleva, P., Calegari, F., Palacios, A. & Martín, F. Attosecond electron dynamics in molecules. Chem. Rev. 117, 10760–10825 (2017).

    Article  Google Scholar 

  7. 7.

    Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    ADS  Article  Google Scholar 

  9. 9.

    Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    ADS  Article  Google Scholar 

  10. 10.

    Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    ADS  Article  Google Scholar 

  11. 11.

    Tzallas, P., Charalambidis, D., Papadogiannis, N., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    Nabekawa, Y. et al. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime. Phys. Rev. Lett. 97, 153904 (2006).

    ADS  Article  Google Scholar 

  13. 13.

    Kim, K. T. et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nat. Phys. 9, 159–163 (2013).

    Article  Google Scholar 

  14. 14.

    Mairesse, Y. et al. High harmonic XUV spectral phase interferometry for direct electric-field reconstruction. Phys. Rev. Lett. 94, 173903 (2005).

    ADS  Article  Google Scholar 

  15. 15.

    Levesque, J. et al. Polarization state of high-order harmonic emission from aligned molecules. Phys. Rev. Lett. 99, 243001 (2007).

    ADS  Article  Google Scholar 

  16. 16.

    Camper, A. et al. High-harmonic phase spectroscopy using a binary diffractive optical element. Phys. Rev. A 89, 043843 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Bruck, Y. M. & Sodin, L. On the ambiguity of the image reconstruction problem. Opt. Commun. 30, 304–308 (1979).

    ADS  Article  Google Scholar 

  18. 18.

    Barakat, R. & Newsam, G. Necessary conditions for a unique solution to two-dimensional phase recovery. J. Math. Phys. 25, 3190–3193 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Klibanov, M. V., Sacks, P. E. & Tikhonravov, A. V. The phase retrieval problem. Inverse Probl. 11, 1 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Miao, J., Sayre, D. & Chapman, H. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 15, 1662–1669 (1998).

    ADS  Article  Google Scholar 

  21. 21.

    Miao, J., Ishikawa, T., Anderson, E. H. & Hodgson, K. O. Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method. Phys. Rev. B 67, 174104 (2003).

    ADS  Article  Google Scholar 

  22. 22.

    Hayes, M., Lim, J. & Oppenheim, A. Signal reconstruction from phase or magnitude. IEEE Trans. Acoustics, Speech, and Signal Processing 28, 672–680 (1980).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Beinert, R. & Plonka, G. Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes. J. Fourier Anal. Appl. 21, 1169–1198 (2015).

    MathSciNet  Article  Google Scholar 

  24. 24.

    Raz, O. et al. Direct phase retrieval in double blind Fourier holography. Opt. Express 22, 24935–24950 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Leshem, B. et al. Direct single-shot phase retrieval from the diffraction pattern of separated objects. Nat. Commun. 7, 10820 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Raz, O. et al. Vectorial phase retrieval for linear characterization of attosecond pulses. Phys. Rev. Lett. 107, 133902 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    Raz, O., Dudovich, N. & Nadler, B. Vectorial phase retrieval of 1-D signals. IEEE Trans. Signal Processing 61, 1632–1643 (2013).

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Lucchini, M. et al. Ptychographic reconstruction of attosecond pulses. Opt. Express 23, 29502–29513 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Keathley, P. D., Bhardwaj, S., Moses, J., Laurent, G. & Krtner, F. X. Volkov transform generalized projection algorithm for attosecond pulse characterization. New J. Phys. 18, 073009 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Leshem, B., Raz, O., Jaffe, A. & Nadler, B. The discrete sign problem: uniqueness, recovery algorithms and phase retrieval applications. Appl. Comput. Harmon. Anal. 45, 463–485 (2018).

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Mairesse for discussions and helpful comments. N.D. is the incumbent of the Robin Chemers Neustein professorial Chair, and gratefully acknowledges the Minerva Foundation, the Israeli Science Foundation, the European Research Council Starting Research Grant MIDAS, the Crown Photonics Center and the I-Core Center for financial support. F.C. acknowledges financial support from ERC Starting Research Grant STARLIGHT no. 637756. D.O. acknowledges financial support from the ICore program and the Crown Photonics Center. B.N. is the incumbent of the William Petschek Professorial Chair of Mathematics, and acknowledges financial support from the Israeli Science Foundation. O.R. is the incumbent of the Shlomo and Michla Tomarin career development chair, and is supported by a research grant from Mr and Mrs Dan Kane and the Abramson Family Center for Young Scientists.

Author information

Affiliations

Authors

Contributions

O.P., B.L., O.R., D.O., F.C. and N.D. conceived and designed the experiments. O.P., A.T., B.L., M.C.C., M.G., E.P.M., F.C., L.P. and F.F. performed the experiments. O.P., A.T., B.L., H.S., F.C., D.O. and N.D. analysed the data. O.P., A.T., H.S., M.L. and F.C. contributed materials/analysis tools. O.P., A.T., B.N., O.R., M.N., F.C., D.O. and N.D. co-wrote the paper.

Corresponding authors

Correspondence to O. Pedatzur or N. Dudovich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1–8 and additional information about the work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pedatzur, O., Trabattoni, A., Leshem, B. et al. Double-blind holography of attosecond pulses. Nature Photon 13, 91–95 (2019). https://doi.org/10.1038/s41566-018-0308-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing