Article | Published:

Phase-locked photonic wire lasers by π coupling

Nature Photonicsvolume 13pages4753 (2019) | Download Citation

Abstract

The term photonic wire laser is now widely used for lasers with transverse dimensions much smaller than the wavelength. As a result, a large fraction of the mode propagates outside the solid core. Here, we propose and demonstrate a scheme to form a coupled cavity by taking advantage of this unique feature of photonic wire lasers. In this scheme, we used quantum cascade lasers with antenna-coupled third-order distributed feedback grating as the platform. Inspired by the chemistry of hybridization, our scheme phase-locks multiple such lasers by π coupling. With the coupled-cavity laser, we demonstrated several performance metrics that are important for various applications in sensing and imaging: a continuous electrical tuning of ~10 GHz at ~3.8 THz (fractional tuning of ~0.26%), a good level of output power (~50–90 mW of continuous-wave power) and tight beam patterns (~100 of beam divergence).

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat. Photon. 1, 589–594 (2007).

  2. 2.

    Noginov, M. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

  3. 3.

    Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–633 (2009).

  4. 4.

    Zhang, J. et al. Photonic-wire laser. Phys. Rev. Lett. 75, 2678–2681 (1995).

  5. 5.

    Hill, M. T. & Gather, M. C. Advances in small lasers. Nat. Photon. 8, 908–918 (2014).

  6. 6.

    Qin, Q., Williams, B. S., Kumar, S., Reno, J. L. & Hu, Q. Tuning a terahertz wire laser. Nat. Photon. 3, 732–737 (2009).

  7. 7.

    Walker, C. K. et al. GUSTO: Gal/Xgal U/LDB Spectroscopic-Stratospheric Terahertz Observatory. In Am. Astron. Soc. Meeting Abstracts Vol. 231 (2018).

  8. 8.

    Kloosterman, J. L. et al. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator. Appl. Phys. Lett. 102, 011123 (2013).

  9. 9.

    Mirzaei, B. et al. 8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser. Opt. Express 25, 29587–29596 (2017).

  10. 10.

    Pikel’ner, S. Structure and dynamics of the interstellar medium. Annu. Rev. Astron. Astrophys. 6, 165–194 (1968).

  11. 11.

    Korter, T. & Plusquellic, D. F. Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared. Chem. Phys. Lett. 385, 45–51 (2004).

  12. 12.

    Fitzgerald, A. et al. Terahertz imaging of breast cancer, a feasibility study. In Conf. Digest of the 2004 Joint 29th Int. Conf. Infrared and Millimeter Waves and 12th Int. Conf. Terahertz Electron. 823–824 (IEEE, 2004).

  13. 13.

    Rahman, A., Rahman, A. K. & Rao, B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens. Bioelectron. 82, 64–70 (2016).

  14. 14.

    Eadie, L. H., Reid, C. B., Fitzgerald, A. J. & Wallace, V. P. Optimizing multi-dimensional terahertz imaging analysis for colon cancer diagnosis. Expert Syst. Appl. 40, 2043–2050 (2013).

  15. 15.

    Darmo, J. et al. Imaging with a terahertz quantum cascade laser. Opt. Express 12, 1879–1884 (2004).

  16. 16.

    Bakopoulos, P. et al. A tunable continuous wave (cw) and short-pulse optical source for THz brain imaging applications. Meas. Sci. Technol. 20, 104001 (2009).

  17. 17.

    Shen, Y. et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116 (2005).

  18. 18.

    Duling, I. & Zimdars, D. Terahertz imaging: revealing hidden defects. Nat. Photon. 3, 630–632 (2009).

  19. 19.

    Ogawa, Y., Hayashi, S., Oikawa, M., Otani, C. & Kawase, K. Interference terahertz label-free imaging for protein detection on a membrane. Opt. Express 16, 22083–22089 (2008).

  20. 20.

    Siegel, P. H. & Dengler, R. J. Applications & early results from THz heterodyne imaging at 119/spl mu/m. In Conf. Digest of the 2004 Joint 29th Int. Conf. Infrared and Millimeter Waves and 12th Int. Conf. Terahertz Electron. 555–556 (IEEE, 2004).

  21. 21.

    Khalatpour, A., Reno, J. L., Kherani, N. P. & Hu, Q. Unidirectional photonic wire laser. Nat. Photon. 11, 555–559 (2017).

  22. 22.

    Jin, Y. et al. High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings. Nat. Commun. 9, 1407 (2018).

  23. 23.

    Curwen, C. A., Reno, J. L. & Williams, B. S. Terahertz quantum cascade VECSEL with watt-level output power. Appl. Phys. Lett. 113, 011104 (2018).

  24. 24.

    Wu, C., Khanal, S., Reno, J. L. & Kumar, S. Terahertz plasmonic laser radiating in an ultra- narrow beam. Optica 3, 734–740 (2016).

  25. 25.

    Curwen, C. A., Xu, L., Reno, J. L., Itoh, T. & Williams, B. S. Broadband continuous tuning of a THz quantum-cascade VECSEL. In CLEO paper STh4O–2 (OSA, 2017).

  26. 26.

    Xu, L. et al. Terahertz metasurface quantum-cascade VECSELs: theory and performance. IEEE J. Sel. Top. Quantum Electron. 23, 1200512 (2017).

  27. 27.

    Qin, Q., Reno, J. L. & Hu, Q. MEMS-based tunable terahertz wire-laser over 330 GHz. Opt. Lett. 36, 692–694 (2011).

  28. 28.

    Han, N. et al. Broadband all-electronically tunable MEMS terahertz quantum cascade lasers. Opt. Lett. 39, 3480–3483 (2014).

  29. 29.

    Turčinkova, D., Amanti, M. I., Scalari, G., Beck, M. & Faist, J. Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity. Appl. Phys. Lett. 106, 131107 (2015).

  30. 30.

    Dunbar, L. A. et al. Small optical volume terahertz emitting microdisk quantum cascade lasers. Appl. Phys. Lett. 90, 141114 (2007).

  31. 31.

    Zhang, H., Scalari, G., Faist, J., Dunbar, L. A. & Houdré, R. Design and fabrication technology for high performance electrical pumped terahertz photonic crystal band edge lasers with complete photonic band gap. J. Appl. Phys. 108, 093104 (2010).

  32. 32.

    Zhao, L., Khanal, S., Gao, L., Reno, J. L. & Kumar, S. Electrical tuning of single-mode terahertz quantum-cascade lasers operating at high temperatures. In 2016 IEEE Photon. Conf. 76–77 (IEEE, 2016).

  33. 33.

    Ackley, D. Single longitudinal mode operation of high power multiple-stripe injection lasers. Appl. Phys. Lett. 42, 152–154 (1983).

  34. 34.

    Katz, J., Margalit, S. & Yariv, A. Diffraction coupled phase-locked semiconductor laser array. Appl. Phys. Lett. 42, 554–556 (1983).

  35. 35.

    Brunner, D. & Fischer, I. Reconfigurable semiconductor laser networks based on diffractive coupling. Opt. Lett. 40, 3854–3857 (2015).

  36. 36.

    Chen, K.-L. & Wang, S. Single-lobe symmetric coupled laser arrays. Electron. Lett. 21, 347–349 (1985).

  37. 37.

    Streifer, W., Welch, D., Cross, P. & Scifres, D. Y-junction semiconductor laser arrays: part I–theory. IEEE J. Quantum Electron. 23, 744–751 (1987).

  38. 38.

    Botez, D. & Peterson, G. Modes of phase-locked diode-laser arrays of closely spaced antiguides. Electron. Lett. 24, 1042–1044 (1988).

  39. 39.

    Botez, D. High-power monolithic phase-locked arrays of antiguided semiconductor diode lasers. In IEE Proc. J. Optoelectron. 139, 14–23 (IEE, 1992).

  40. 40.

    Kao, T.-Y., Hu, Q. & Reno, J. L. Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers. Appl. Phys. Lett. 96, 101106 (2010).

  41. 41.

    Kao, T.-Y., Reno, J. L. & Hu, Q. Phase-locked laser arrays through global antenna mutual coupling. Nat. Photon. 10, 541–546 (2016).

  42. 42.

    Kao, T.-Y., Cai, X., Lee, A. W., Reno, J. L. & Hu, Q. Antenna coupled photonic wire lasers. Opt. Express 23, 17091–17100 (2015).

  43. 43.

    Amanti, M., Fischer, M., Scalari, G., Beck, M. & Faist, J. Low-divergence single-mode terahertz quantum cascade laser. Nat. Photon. 3, 586–590 (2009).

  44. 44.

    Roessler, D. Kramers-Kronig analysis of reflection data. Br. J. Appl. Phys. 16, 1119–1123 (1965).

  45. 45.

    Beverini, N. et al. Frequency characterization of a terahertz quantum-cascade laser. IEEE Trans. Instrum. Meas. 56, 262–265 (2007).

  46. 46.

    Fasching, G. et al. Subwavelength microdisk and microring terahertz quantum-cascade lasers. IEEE J. Quantum Electron. 43, 687–697 (2007).

  47. 47.

    Faist, J. Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits. Appl. Phys. Lett. 90, 253512 (2007).

  48. 48.

    Burghoff, D. et al. A terahertz pulse emitter monolithically integrated with a quantum cascade laser. Appl. Phys. Lett. 98, 061112 (2011).

  49. 49.

    Chan, C. W. I., Albo, A., Hu, Q. & Reno, J. L. Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers. Appl. Phys. Lett. 109, 201104 (2016).

Download references

Acknowledgements

This work is supported by the National Aeronautics and Space Administration (NASA) at MIT. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. A.K acknowledges M. Belanger of MIT Edgerton shop for guidance in preparing the copper heat sinks. A.K. also acknowledges useful discussions with A. K. Paulsen, Y. Yang and T. Zeng.

Author information

Affiliations

  1. Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Ali Khalatpour
    •  & Qing Hu
  2. Sandia National Laboratories, Centre of Integrated Nanotechnologies, Albuquerque, NM, USA

    • John L. Reno
  3. Terahertz Technology Innovation Research Institute, and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China

    • Qing Hu

Authors

  1. Search for Ali Khalatpour in:

  2. Search for John L. Reno in:

  3. Search for Qing Hu in:

Contributions

A.K. conceived the idea, strategy, designed and fabricated the devices, performed the measurements and analysis, and wrote the manuscript. J.L.R. performed the molecular-beam epitaxy growth. All the work was done under the supervision of Q.H.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Qing Hu.

Supplementary information

  1. Supplementary Information

    Supplementary notes and figures.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41566-018-0307-0