Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phase-locked photonic wire lasers by π coupling

Abstract

The term photonic wire laser is now widely used for lasers with transverse dimensions much smaller than the wavelength. As a result, a large fraction of the mode propagates outside the solid core. Here, we propose and demonstrate a scheme to form a coupled cavity by taking advantage of this unique feature of photonic wire lasers. In this scheme, we used quantum cascade lasers with antenna-coupled third-order distributed feedback grating as the platform. Inspired by the chemistry of hybridization, our scheme phase-locks multiple such lasers by π coupling. With the coupled-cavity laser, we demonstrated several performance metrics that are important for various applications in sensing and imaging: a continuous electrical tuning of ~10 GHz at ~3.8 THz (fractional tuning of ~0.26%), a good level of output power (~50–90 mW of continuous-wave power) and tight beam patterns (~100 of beam divergence).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Full-wave simulations of DFB with and without antenna loop.
Fig. 2: Experimental verification of π-coupled ADFB.
Fig. 3: Experimental set-up for measuring frequency difference with kHz resolution.
Fig. 4: Frequency tuning of π-coupled ADFBs.
Fig. 5: Result of a π-coupled ADFB optimized for output power.
Fig. 6: Versatility of the π-coupled scheme for higher numbers of ADFBs.

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat. Photon. 1, 589–594 (2007).

    ADS  Article  Google Scholar 

  2. 2.

    Noginov, M. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–633 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    Zhang, J. et al. Photonic-wire laser. Phys. Rev. Lett. 75, 2678–2681 (1995).

    ADS  Article  Google Scholar 

  5. 5.

    Hill, M. T. & Gather, M. C. Advances in small lasers. Nat. Photon. 8, 908–918 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Qin, Q., Williams, B. S., Kumar, S., Reno, J. L. & Hu, Q. Tuning a terahertz wire laser. Nat. Photon. 3, 732–737 (2009).

    ADS  Article  Google Scholar 

  7. 7.

    Walker, C. K. et al. GUSTO: Gal/Xgal U/LDB Spectroscopic-Stratospheric Terahertz Observatory. In Am. Astron. Soc. Meeting Abstracts Vol. 231 (2018).

  8. 8.

    Kloosterman, J. L. et al. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator. Appl. Phys. Lett. 102, 011123 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Mirzaei, B. et al. 8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser. Opt. Express 25, 29587–29596 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Pikel’ner, S. Structure and dynamics of the interstellar medium. Annu. Rev. Astron. Astrophys. 6, 165–194 (1968).

    ADS  Article  Google Scholar 

  11. 11.

    Korter, T. & Plusquellic, D. F. Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared. Chem. Phys. Lett. 385, 45–51 (2004).

    ADS  Article  Google Scholar 

  12. 12.

    Fitzgerald, A. et al. Terahertz imaging of breast cancer, a feasibility study. In Conf. Digest of the 2004 Joint 29th Int. Conf. Infrared and Millimeter Waves and 12th Int. Conf. Terahertz Electron. 823–824 (IEEE, 2004).

  13. 13.

    Rahman, A., Rahman, A. K. & Rao, B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging. Biosens. Bioelectron. 82, 64–70 (2016).

    Article  Google Scholar 

  14. 14.

    Eadie, L. H., Reid, C. B., Fitzgerald, A. J. & Wallace, V. P. Optimizing multi-dimensional terahertz imaging analysis for colon cancer diagnosis. Expert Syst. Appl. 40, 2043–2050 (2013).

    Article  Google Scholar 

  15. 15.

    Darmo, J. et al. Imaging with a terahertz quantum cascade laser. Opt. Express 12, 1879–1884 (2004).

    ADS  Article  Google Scholar 

  16. 16.

    Bakopoulos, P. et al. A tunable continuous wave (cw) and short-pulse optical source for THz brain imaging applications. Meas. Sci. Technol. 20, 104001 (2009).

    ADS  Article  Google Scholar 

  17. 17.

    Shen, Y. et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116 (2005).

    ADS  Article  Google Scholar 

  18. 18.

    Duling, I. & Zimdars, D. Terahertz imaging: revealing hidden defects. Nat. Photon. 3, 630–632 (2009).

    ADS  Article  Google Scholar 

  19. 19.

    Ogawa, Y., Hayashi, S., Oikawa, M., Otani, C. & Kawase, K. Interference terahertz label-free imaging for protein detection on a membrane. Opt. Express 16, 22083–22089 (2008).

    ADS  Article  Google Scholar 

  20. 20.

    Siegel, P. H. & Dengler, R. J. Applications & early results from THz heterodyne imaging at 119/spl mu/m. In Conf. Digest of the 2004 Joint 29th Int. Conf. Infrared and Millimeter Waves and 12th Int. Conf. Terahertz Electron. 555–556 (IEEE, 2004).

  21. 21.

    Khalatpour, A., Reno, J. L., Kherani, N. P. & Hu, Q. Unidirectional photonic wire laser. Nat. Photon. 11, 555–559 (2017).

    Article  Google Scholar 

  22. 22.

    Jin, Y. et al. High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings. Nat. Commun. 9, 1407 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Curwen, C. A., Reno, J. L. & Williams, B. S. Terahertz quantum cascade VECSEL with watt-level output power. Appl. Phys. Lett. 113, 011104 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Wu, C., Khanal, S., Reno, J. L. & Kumar, S. Terahertz plasmonic laser radiating in an ultra- narrow beam. Optica 3, 734–740 (2016).

    Article  Google Scholar 

  25. 25.

    Curwen, C. A., Xu, L., Reno, J. L., Itoh, T. & Williams, B. S. Broadband continuous tuning of a THz quantum-cascade VECSEL. In CLEO paper STh4O–2 (OSA, 2017).

  26. 26.

    Xu, L. et al. Terahertz metasurface quantum-cascade VECSELs: theory and performance. IEEE J. Sel. Top. Quantum Electron. 23, 1200512 (2017).

    Google Scholar 

  27. 27.

    Qin, Q., Reno, J. L. & Hu, Q. MEMS-based tunable terahertz wire-laser over 330 GHz. Opt. Lett. 36, 692–694 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    Han, N. et al. Broadband all-electronically tunable MEMS terahertz quantum cascade lasers. Opt. Lett. 39, 3480–3483 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    Turčinkova, D., Amanti, M. I., Scalari, G., Beck, M. & Faist, J. Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity. Appl. Phys. Lett. 106, 131107 (2015).

    ADS  Article  Google Scholar 

  30. 30.

    Dunbar, L. A. et al. Small optical volume terahertz emitting microdisk quantum cascade lasers. Appl. Phys. Lett. 90, 141114 (2007).

    ADS  Article  Google Scholar 

  31. 31.

    Zhang, H., Scalari, G., Faist, J., Dunbar, L. A. & Houdré, R. Design and fabrication technology for high performance electrical pumped terahertz photonic crystal band edge lasers with complete photonic band gap. J. Appl. Phys. 108, 093104 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Zhao, L., Khanal, S., Gao, L., Reno, J. L. & Kumar, S. Electrical tuning of single-mode terahertz quantum-cascade lasers operating at high temperatures. In 2016 IEEE Photon. Conf. 76–77 (IEEE, 2016).

  33. 33.

    Ackley, D. Single longitudinal mode operation of high power multiple-stripe injection lasers. Appl. Phys. Lett. 42, 152–154 (1983).

    ADS  Article  Google Scholar 

  34. 34.

    Katz, J., Margalit, S. & Yariv, A. Diffraction coupled phase-locked semiconductor laser array. Appl. Phys. Lett. 42, 554–556 (1983).

    ADS  Article  Google Scholar 

  35. 35.

    Brunner, D. & Fischer, I. Reconfigurable semiconductor laser networks based on diffractive coupling. Opt. Lett. 40, 3854–3857 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Chen, K.-L. & Wang, S. Single-lobe symmetric coupled laser arrays. Electron. Lett. 21, 347–349 (1985).

    ADS  Article  Google Scholar 

  37. 37.

    Streifer, W., Welch, D., Cross, P. & Scifres, D. Y-junction semiconductor laser arrays: part I–theory. IEEE J. Quantum Electron. 23, 744–751 (1987).

    ADS  Article  Google Scholar 

  38. 38.

    Botez, D. & Peterson, G. Modes of phase-locked diode-laser arrays of closely spaced antiguides. Electron. Lett. 24, 1042–1044 (1988).

    Article  Google Scholar 

  39. 39.

    Botez, D. High-power monolithic phase-locked arrays of antiguided semiconductor diode lasers. In IEE Proc. J. Optoelectron. 139, 14–23 (IEE, 1992).

  40. 40.

    Kao, T.-Y., Hu, Q. & Reno, J. L. Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers. Appl. Phys. Lett. 96, 101106 (2010).

    ADS  Article  Google Scholar 

  41. 41.

    Kao, T.-Y., Reno, J. L. & Hu, Q. Phase-locked laser arrays through global antenna mutual coupling. Nat. Photon. 10, 541–546 (2016).

    ADS  Article  Google Scholar 

  42. 42.

    Kao, T.-Y., Cai, X., Lee, A. W., Reno, J. L. & Hu, Q. Antenna coupled photonic wire lasers. Opt. Express 23, 17091–17100 (2015).

    ADS  Article  Google Scholar 

  43. 43.

    Amanti, M., Fischer, M., Scalari, G., Beck, M. & Faist, J. Low-divergence single-mode terahertz quantum cascade laser. Nat. Photon. 3, 586–590 (2009).

    ADS  Article  Google Scholar 

  44. 44.

    Roessler, D. Kramers-Kronig analysis of reflection data. Br. J. Appl. Phys. 16, 1119–1123 (1965).

    ADS  Article  Google Scholar 

  45. 45.

    Beverini, N. et al. Frequency characterization of a terahertz quantum-cascade laser. IEEE Trans. Instrum. Meas. 56, 262–265 (2007).

    Article  Google Scholar 

  46. 46.

    Fasching, G. et al. Subwavelength microdisk and microring terahertz quantum-cascade lasers. IEEE J. Quantum Electron. 43, 687–697 (2007).

    ADS  Article  Google Scholar 

  47. 47.

    Faist, J. Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits. Appl. Phys. Lett. 90, 253512 (2007).

    ADS  Article  Google Scholar 

  48. 48.

    Burghoff, D. et al. A terahertz pulse emitter monolithically integrated with a quantum cascade laser. Appl. Phys. Lett. 98, 061112 (2011).

    ADS  Article  Google Scholar 

  49. 49.

    Chan, C. W. I., Albo, A., Hu, Q. & Reno, J. L. Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers. Appl. Phys. Lett. 109, 201104 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Aeronautics and Space Administration (NASA) at MIT. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. A.K acknowledges M. Belanger of MIT Edgerton shop for guidance in preparing the copper heat sinks. A.K. also acknowledges useful discussions with A. K. Paulsen, Y. Yang and T. Zeng.

Author information

Affiliations

Authors

Contributions

A.K. conceived the idea, strategy, designed and fabricated the devices, performed the measurements and analysis, and wrote the manuscript. J.L.R. performed the molecular-beam epitaxy growth. All the work was done under the supervision of Q.H.

Corresponding author

Correspondence to Qing Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalatpour, A., Reno, J.L. & Hu, Q. Phase-locked photonic wire lasers by π coupling. Nature Photon 13, 47–53 (2019). https://doi.org/10.1038/s41566-018-0307-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing