Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Symmetry-breaking-induced nonlinear optics at a microcavity surface

Abstract

Second-order nonlinear optical processes lie at the heart of many applications in both classical and quantum regimes1,2,3. Inversion symmetry, however, rules out the second-order nonlinear electric-dipole response1,4,5 in materials widely adopted in integrated photonics (for example, SiO2, Si and Si3N4). Here, we report nonlinear optics induced by symmetry breaking6,7,8,9,10 at the surface of an ultrahigh-Q silica microcavity under a sub-milliwatt continuous-wave pump. By dynamically coordinating the double-resonance phase matching, a second harmonic is achieved with an unprecedented conversion efficiency of 0.049% W−1, 14 orders of magnitude higher than that of the non-enhancement case11. In addition, the nonlinear effect from the intrinsic symmetry breaking at the surface8,12 can be identified unambiguously, with guided control of the pump polarization and the recognition of the second-harmonic mode distribution. This work not only extends the emission frequency range of silica photonic devices, but also lays the groundwork for applications in ultra-sensitive surface analysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observation of cavity-enhanced SH signals.
Fig. 2: Phase matching assisted by thermal and optical Kerr effects.
Fig. 3: Identification of symmetry-breaking-induced nonlinearity from the pure bulk response.
Fig. 4: Measured spectra of second-order sum-frequency generation.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Boyd, R. W. Nonlinear Optics (Elsevier, New York, 2003).

  2. Pereira, S., Xiao, M., Kimble, H. & Hall, J. Generation of squeezed light by intracavity frequency doubling. Phys. Rev. A 38, 4931–4934 (1988).

    Article  ADS  Google Scholar 

  3. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  4. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

    Article  ADS  Google Scholar 

  5. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    Article  ADS  Google Scholar 

  6. Bloembergen, N., Chang, R. K., Jha, S. & Lee, C. Optical second-harmonic generation in reflection from media with inversion symmetry. Phys. Rev. 174, 813–822 (1968).

    Article  ADS  Google Scholar 

  7. Shen, Y. R. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519–525 (1989).

    Article  ADS  Google Scholar 

  8. Shen, Y. R. in Fundamentals of Sum-Frequency Spectroscopy Ch. 3 (Cambridge University Press, Cambridge, UK, 2016).

  9. Cazzanelli, M. & Schilling, J. Second order optical nonlinearity in silicon by symmetry breaking. Appl. Phys. Rev. 3, 011104 (2016).

    Article  ADS  Google Scholar 

  10. Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

    Article  ADS  Google Scholar 

  11. Tian, C. & Shen, Y. R. Recent progress on sum-frequency spectroscopy. Surf. Sci. Rep. 69, 105–131 (2014).

    Article  ADS  Google Scholar 

  12. Sun, S., Tian, C. & Shen, Y. R. Surface sum-frequency vibrational spectroscopy of nonpolar media. Proc. Natl Acad. Sci. USA 112, 5883–5887 (2015).

    Article  ADS  Google Scholar 

  13. Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202 (2006).

    Article  ADS  Google Scholar 

  14. Cazzanelli, M. et al. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat. Mater. 11, 148–154 (2012).

    Article  ADS  Google Scholar 

  15. Timurdogan, E., Poulton, C. V., Byrd, M. & Watts, M. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photon. 11, 200–206 (2017).

    Article  ADS  Google Scholar 

  16. Heinz, T. F., Tom, H. W. K. & Shen, Y. R. Determination of molecular orientation of monolayer adsorbates by optical second-harmonic generation. Phys. Rev. A 28, 1883–1885 (1983).

    Article  ADS  Google Scholar 

  17. Corn, R. M. & Higgins, D. A. Optical second harmonic generation as a probe of surface chemistry. Chem. Rev. 94, 107–125 (1994).

    Article  Google Scholar 

  18. Qian, S.-X., Snow, J. B., Tzeng, H.-M. & Chang, R. K. Lasing droplets: highlighting the liquid-air interface by laser emission. Science 231, 486–488 (1986).

    Article  ADS  Google Scholar 

  19. Braginsky, V., Gorodetsky, M. & Ilchenko, V. Quality-factor and nonlinear properties of optical whispering gallery modes. Phys. Lett. A 137, 393–397 (1989).

    Article  ADS  Google Scholar 

  20. Lin, H.-B. & Campillo, A. CW nonlinear optics in droplet microcavities displaying enhanced gain. Phys. Rev. Lett. 73, 2440–2443 (1994).

    Article  ADS  Google Scholar 

  21. Carmon, T. & Vahala, K. J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys. 3, 430–435 (2007).

    Article  Google Scholar 

  22. Fürst, J. et al. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104, 153901 (2010).

    Article  ADS  Google Scholar 

  23. Del’ Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  24. Breunig, I. Three wave mixing in whispering gallery resonators. Laser Photon. Rev. 10, 569–587 (2016).

    Article  ADS  Google Scholar 

  25. Jiang, X. et al. Chaos-assisted broadband momentum transformation in optical microresonators. Science 358, 344–347 (2017).

    Article  ADS  Google Scholar 

  26. Gouveia, M. A. et al. Second harmonic generation and enhancement in microfibers and loop resonators. Appl. Phys. Lett. 102, 201120 (2013).

    Article  ADS  Google Scholar 

  27. Lettieri, S. et al. Second-harmonic generation in hydrogenated amorphous-Si1−xNx doubly resonant microcavities with periodic dielectric mirrors. Appl. Phys. Lett. 87, 191110 (2005).

    Article  ADS  Google Scholar 

  28. Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).

    Article  ADS  Google Scholar 

  29. Asano, M. et al. Visible light emission from a silica microbottle resonator by second- and third-harmonic generation. Opt. Lett. 41, 5793–5796 (2016).

    Article  ADS  Google Scholar 

  30. Xue, X. et al. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl. 6, e16253 (2017).

    Article  Google Scholar 

  31. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  32. Ward, J. & Benson, O. WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photon. Rev. 5, 553–570 (2011).

    Article  ADS  Google Scholar 

  33. Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  Google Scholar 

  34. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  35. Andrews, D. L. & Allcock, P. Optical Harmonics in Molecular Systems: Quantum Electrodynamical Theory (Wiley Online Library, Weinheim, 2002).

Download references

Acknowledgements

The authors thank K. J. Vahala, M. Lončar, C. Tian, Y. R. Shen, T. F. Heinz, X. Yi, D. Lippolis, H. Wang, Q.-F. Yang and L. Shao for helpful discussions. This project is supported by the National Natural Science Foundation of China (grant nos. 11825402, 11654003, 61435001, 11474011, 61611540346 and 11527901), the National Key R&D Program of China (grant no. 2016YFA0301302), and the High-performance Computing Platform of Peking University.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and Q.-T.C. fabricated the microcavity samples, built the experimental set-up and carried out measurements. X.Z., Q.-T.C., Z.W., Y.-x.L. and C.-W.Q. built the theoretical model and peformed numerical simulations. Y.-F.X., X.Z., Q.-T.C., C.-W.Q. and L.Y. wrote the manuscript with input from all co-authors. All the authors analysed the data and contributed to the discussion. Y.-F.X. conceived the idea and designed the experiment. Y.-F.X. and Q.G. supervised the project.

Corresponding author

Correspondence to Yun-Feng Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1–2 and additional information about the work.

Supplementary Video 1

Dynamic phase-matching process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Cao, QT., Wang, Z. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nature Photon 13, 21–24 (2019). https://doi.org/10.1038/s41566-018-0297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0297-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing