High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes

Abstract

Perovskite-based optoelectronic devices are gaining much attention owing to their remarkable performance and low processing cost, particularly for solar cells. However, for perovskite light-emitting diodes, non-radiative charge recombination has limited the electroluminescence efficiency. Here we demonstrate perovskite–polymer bulk heterostructure light-emitting diodes exhibiting external quantum efficiencies of up to 20.1% (at current densities of 0.1–1 mA cm−2). The light-emitting diode emissive layer comprises quasi-two-dimensional and three-dimensional (2D/3D) perovskites and an insulating polymer. Photogenerated excitations migrate from quasi-2D to lower-energy sites within 1 ps, followed by radiative bimolecular recombination in the 3D regions. From near-unity external photoluminescence quantum efficiencies and transient kinetics of the emissive layer with and without charge-transport contacts, we find non-radiative recombination pathways to be effectively eliminated, consistent with optical models giving near 100% internal quantum efficiencies. Although the device brightness and stability (T50 = 46 h in air at peak external quantum efficiency) require further improvement, our results indicate the significant potential of perovskite-based photon sources.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Basic optical and structural characterization of PPBH.
Fig. 2: LED performance characterization and emissive layer PLQEs.
Fig. 3: Transient (nano- to microsecond) optical experiments.
Fig. 4: Ultrafast (femto- to picosecond) transient optical experiments.
Fig. 5: Optical modelling of PPBH LEDs and lateral photoluminescence experiments.

Data availability

The data that support the plots within this paper and other findings of this study are available in the University of Cambridge Repository (https://doi.org/10.17863/CAM.30616). Related research results are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  2. 2.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  4. 4.

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotech. 9, 687–692 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotech. 11, 872–877 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  Google Scholar 

  10. 10.

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

    Article  Google Scholar 

  12. 12.

    Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).

    ADS  Article  Google Scholar 

  15. 15.

    Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Ross, R. T. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593 (1967).

    ADS  Article  Google Scholar 

  19. 19.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    ADS  Article  Google Scholar 

  20. 20.

    Yablonovitch, E. Lead halides join the top optoelectronic league. Science 351, 1401 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Di, D. et al. Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix. J. Phys. Chem. Lett. 6, 446–450 (2015).

    Article  Google Scholar 

  22. 22.

    Li, G. et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Weller, M. T., Weber, O. J., Frost, J. M. & Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015).

    Article  Google Scholar 

  25. 25.

    Wang, J. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015).

    Article  Google Scholar 

  26. 26.

    Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2, 16207 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Saba, M. et al. Correlated electron–hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014).

    Article  Google Scholar 

  29. 29.

    Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Pazos-Outón, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Bai, S. et al. High-performance planar heterojunction perovskite solar cells: preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 7, 1749–1758 (2014).

    Article  Google Scholar 

  34. 34.

    Zhou, Y. et al. A universal method to produce low-work function electrodes for organic electronics. Science 336, 327–332 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Greenham, N. C., Friend, R. H. & Bradley, D. D. C. Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations. Adv. Mater. 6, 491–494 (1994).

    Article  Google Scholar 

  36. 36.

    Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003).

    Article  Google Scholar 

  37. 37.

    de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  Google Scholar 

  38. 38.

    Di, D. et al. Efficient triplet exciton fusion in molecularly doped polymer light-emitting diodes. Adv. Mater. 29, 1605987 (2017).

    Article  Google Scholar 

  39. 39.

    Wallikewitz, B. H., Kabra, D., Gélinas, S. & Friend, R. H. Triplet dynamics in fluorescent polymer light-emitting diodes. Phys. Rev. B 85, 45209 (2012).

    ADS  Article  Google Scholar 

  40. 40.

    Chen, K., Gallaher, J. K., Barker, A. J. & Hodgkiss, J. M. Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra. J. Phys. Chem. Lett. 5, 1732–1737 (2014).

    Article  Google Scholar 

  41. 41.

    Jakowetz, A. C. et al. What controls the rate of ultrafast charge transfer and charge separation efficiency in organic photovoltaic blends. J. Am. Chem. Soc. 138, 11672–11679 (2016).

    Article  Google Scholar 

  42. 42.

    Xu, X., Goponenko, A. V. & Asher, S. A. Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials. J. Am. Chem. Soc. 130, 3113–3119 (2008).

    Article  Google Scholar 

  43. 43.

    Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962 (1998).

    ADS  Article  Google Scholar 

  44. 44.

    Benisty, H., Stanley, R. & Mayer, M. Method of source terms for dipole emission modification in modes of arbitrary planar structures. J. Opt. Soc. Am. A 15, 1192 (1998).

    ADS  Article  Google Scholar 

  45. 45.

    Defrance, J. et al. Moosh: a numerical Swiss army knife for the optics of multilayers in Octave/Matlab. J. Open Res. Softw. 4, e13 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

B.Z. thanks the Cambridge Trust and China Scholarship Council for funding and support. S.B. is supported by a VINNMER Marie-Curie Fellowship. R.S. acknowledges support from the Royal Society Newton-Bhabha International Fellowship. M.A. acknowledges support from the President of the UAE’s Distinguished Student Scholarship Program (DSS), granted by the UAE’s Ministry of Presidential Affairs. XMaS is a mid-range facility supported by the Engineering and Physical Sciences Research Council (EPSRC). The authors thank all the XMaS beamline team staff for their support. P.G. thanks the ‘Thousand Talent Program’ for support. D.D. and R.H.F. thank the EPSRC for support. The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 670405).

Author information

Affiliations

Authors

Contributions

B.Z. and D.D. developed and characterized the high-efficiency LEDs. D.D., B.Z. and L.Y. carried out the nano- to microsecond transient photoluminescence and electroluminescence studies. V.K. conducted the transient absorption experiments. J.M.R. performed the femto- to picosecond transient photoluminescence measurements. R.L. developed the optical model for the LED devices under the guidance of N.C.G. S.B. synthesised the MZO nanocrystals, tailored the MZO properties, and contributed to LED development. R.S. carried out the lateral photoluminescence experiments. F.A., L.L. and P.G. synthesized the perovskite precursors. L.D. performed the HR-TEM and atomic force microscopy measurements. X.-J.S. and B.Z. performed the SEM studies. F.A., M.A., P.G. and B.Z. carried out the XRD analysis. J.Z. helped with some transient measurements and PLQE calculations. D.D. and B.Z. analysed all the results and wrote the manuscript, which was revised by R.H.F. All authors contributed to the work and commented on the paper. D.D. planned the project and guided the work, with R.H.F.

Corresponding authors

Correspondence to Richard H. Friend or Dawei Di.

Ethics declarations

Competing interests

R.H.F., H.J.S. and N.C.G. are co-founders of Heliochrome Ltd.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional data for chemical structure, morphology and device characterization

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Bai, S., Kim, V. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photon 12, 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing