Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prospects and physical mechanisms for photonic space propulsion

Abstract

An abundant source of energy in space, electromagnetic radiation can provide spacecraft with a gentle yet persistent thrust for interplanetary and interstellar missions. Early successes with microlaser and solar propulsion platforms confirm their potential for near-Earth and deep space exploration, although practical realization of reliable photonic devices is not trivial. This Perspective outlines the recent achievements and future outlook in the field of photonic space propulsion. We highlight several light-enabled mechanisms of thrust generation via photon–matter interactions such as photonic pressure and ablation, optical gradient forces, light-induced electron emission and others. Finally, we outline some of the key challenges in the area and possible solutions for practical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Artistic presentation of several types of photonic space thrust platform.
Fig. 2: Examples of photonic propulsion systems.
Fig. 3: Photon-induced forces for thrust vector control.

References

  1. 1.

    Kantrowitz, A. Propulsion to orbit by ground-based laser. Aeronaut. Astronaut. 10, 74–76 (1972).

    Google Scholar 

  2. 2.

    Nakano, M., Ishikawa, T. & Wakabayashi, R. Laser propulsion technology on KKS-1 microsatellite. Rev. Laser Eng. 39, 34–40 (2011).

    Article  Google Scholar 

  3. 3.

    Levchenko, I., Bazaka, K., Keidar, M., Xu, S. & Fang, J. Hierarchical multi-component inorganic metamaterials: intrinsically driven self-assembly at nanoscale. Adv. Mater. 30, 1702226 (2018).

    Article  Google Scholar 

  4. 4.

    Zypries, B. Space, the public, and politics. Space Policy 41, 73–74 (2017).

    Article  Google Scholar 

  5. 5.

    Kishi, N. Management analysis for the space industry. Space Policy 39–40, 1–6 (2017).

    Article  Google Scholar 

  6. 6.

    Takenaka, H. Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat. Photon. 11, 502–508 (2017).

    Article  Google Scholar 

  7. 7.

    Levchenko, I. et al. Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nat. Commun. 9, 879 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Iridium. Follow 8 Launch Missions https://www.iridiumnext.com (2017).

  9. 9.

    OneWeb Satellites http://onewebsatellites.com (2017).

  10. 10.

    NASA. New Horizons; https://www.nasa.gov/newhorizons

  11. 11.

    NASA. New Horizons: NASA’s Mission to Pluto and the Kuiper Belt; www.pluto.jhuapl.edu

  12. 12.

    NASA. OSIRIS-Rex; https://www.nasa.gov/osiris-rex

  13. 13.

    Keller, L. P. et al. Infrared spectroscopy of comet 81P/Wild 2 samples returned by stardust. Science 314, 1728–1731 (2006).

    ADS  Article  Google Scholar 

  14. 14.

    Strange, N. et. al. High power solar electric propulsion and the Asteroid Redirect Robotic Mission (ARRM). In IEEE Aerospace Conf. 1–10 (IEEE, 2017).

  15. 15.

    Takahashi, T., Mitsuda, K. & Kunieda, H. The NeXT Mission. Proc. SPIE 6266, 62660D (2006).

    ADS  Article  Google Scholar 

  16. 16.

    NASA. Mars Today: Robotic Exploration www.nasa.gov/mars (2017).

  17. 17.

    LoKeidarng, K. F. Deep Space Propulsion: A Roadmap to Interstellar Flight (Springer, New York, 2012).

  18. 18.

    Levchenko, I. et al. Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers. Appl. Phys. Rev. 5, 011104 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    LGarde Inc. Sunjammer; http://www.lgarde.com/space-propulsion.php

  20. 20.

    Biddy, C. & Svitek, T. LightSail-1 solar sail design and qualification. In Proc. 41st Aerosp. Mechan. Symp. 451–463 (2012).

  21. 21.

    Anderson, J. D. et al. Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81, 2858–2861 (1998).

    ADS  Article  Google Scholar 

  22. 22.

    Turyshev, S. G. et al. Support for the thermal origin of the pioneer anomaly. Phys. Rev. Lett. 108, 241101 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    NASA. Kepler's Second Light: How K2 Will Work https://www.nasa.gov/kepler/keplers-second-light-how-k2-will-work (2013).

  24. 24.

    Johnson, L. et al. NanoSail-D: a solar sail demonstration mission. Acta Astronaut. 68, 571–575 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Mazouffre, S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Sci. Technol. 25, 033002 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Charles, C. Plasmas for spacecraft propulsion. J. Phys. D 42, 163001 (2009).

    ADS  Article  Google Scholar 

  27. 27.

    Choueiri, E. Y. New dawn for electric rockets. Sci. Am. 300, 58–65 (2009).

    Article  Google Scholar 

  28. 28.

    Aljunid, S. A. et al. Atomic response in the near-field of nanostructured plasmonic metamaterial. Nano Lett. 16, 3137–3141 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Syring, C. & Herdrich, G. Jet extraction modes of inertial electrostatic confinement devices for electric propulsion applications. Vacuum 136, 177–183 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Reichhardt, T. Setting sail for history. Nature 433, 678–679 (2005).

    ADS  Article  Google Scholar 

  31. 31.

    Johnson, L., Young, R., Montgomery, E. & Alhorn, D. Status of solar sail technology within NASA. Adv. Space Res. 48, 1687–1694 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    Perlmutter, S. et al. Supernova cosmology project collaboration. Astrophys. J. 517, 565–587 (1999).

    ADS  Article  Google Scholar 

  33. 33.

    Tsuda, Y. et al. Flight status of IKAROS deep space solar sail demonstrator. Acta Astronaut. 69, 833–840 (2011).

    ADS  Article  Google Scholar 

  34. 34.

    Lappas, V. et al. CubeSail: a low cost CubeSat based solar sail demonstration mission. Adv. Space Res. 48, 1890–1901 (2011).

    ADS  Article  Google Scholar 

  35. 35.

    NASA. NASA’s Nanosail-D ‘Sails’ Home—Mission Complete ; https://www.nasa.gov/mission_pages/smallsats/nanosaild.html

  36. 36.

    Macdonald, M. et al. GeoSail: an elegant solar sail demonstration mission. J. Spacecraft Rockets 44, 784–796 (2007).

    ADS  Article  Google Scholar 

  37. 37.

    Metzger, R. A. & Landis, G. Multi-bounce laser-based sails. AIP Conf. Proc. 552, 397–402 (2001).

    ADS  Article  Google Scholar 

  38. 38.

    Breakthrough Initiatives. Breakthrough Starshot project; http://breakthroughinitiatives.org

  39. 39.

    Phipps, C. et al. Laser-ablation propulsion. J. Propul. Power 26, 609–637 (2010).

    Article  Google Scholar 

  40. 40.

    Myrabo, L. N. World record flights of beam-riding rocket lightcraft—demonstration of “disruptive” propulsion technology. 37th Joint Propulsion Conference Paper AIAA01-3798 (2001).

  41. 41.

    Bergstue, G., Fork, R. & Reardon, P. An advanced optical system for laser ablation propulsion in space. Acta Astronaut. 96, 97–105 (2014).

    ADS  Article  Google Scholar 

  42. 42.

    Eckel, H.-A., Scharring, S., Karg, S., Illg, C. & Peter, J. Overview of laser ablation micropropulsion research activities at DLR Stuttgart. In Conf. Proc. Teilnehmer-CD HPLA/BEP 2014 (2014); http://elib.dlr.de/89091

  43. 43.

    Sinko, J. Review of CO2 laser ablation propulsion with polyoxymethylene. Int. J. Aerospace Innovations 3, 93–130 (2011).

    Article  Google Scholar 

  44. 44.

    Phipps, C. R., Luke, J. R., Helgeson, W. & Johnson, R. A ns-pulse laser microthruster. AIP Conf. Proc. 830, 235–246 (2006).

    ADS  Article  Google Scholar 

  45. 45.

    Phipps, C. R. Performance test results for the laser-powered microthruster. AIP Conf. Proc. 830, 224–234 (2006).

    ADS  Article  Google Scholar 

  46. 46.

    Phipps, C. et al. A review of laser ablation propulsion. AIP Conf. Proc. 1278, 710–722 (2010).

    ADS  Article  Google Scholar 

  47. 47.

    Palmer, A. J. et al. Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014801 (2011).

    ADS  Article  Google Scholar 

  48. 48.

    Palmer, C. A. J. et al. Rayleigh-Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser. Phys. Rev. Lett. 108, 225002 (2012).

    ADS  Article  Google Scholar 

  49. 49.

    Merali, Z. Shooting for a star. Science 352, 1040–1041 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Macchi, A., Borghesi, M. & Passoni, M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013).

    ADS  Article  Google Scholar 

  51. 51.

    Daido, H., Nishiuchi, M. & Pirozhkov, A. S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401 (2012).

    ADS  Article  Google Scholar 

  52. 52.

    Zhang, T. et al. Macroscopic and direct light propulsion of bulk graphene material. Nat. Photon. 9, 471–477 (2015).

    ADS  Article  Google Scholar 

  53. 53.

    Corde, S. et al. Observation of longitudinal and transverse self-injections in laser-plasma accelerators. Nature Commun. 4, 1501 (2013).

    Article  Google Scholar 

  54. 54.

    Clark, L. Graphene spacecraft could fly on starlight. WIRED http://www.wired.co.uk/article/graphene-spacecraft (29 May 2015).

  55. 55.

    Wu, L., Zhang, Y., Lei, Y. & Reese, J. M. Do thermal effects cause the propulsion of bulk graphene material? Nat. Photon. 10, 139 (2016).

    ADS  Article  Google Scholar 

  56. 56.

    Zhang, T. et al. Reply to ‘Do thermal effects cause the propulsion of bulk graphene material?’. Nat. Photon. 10, 139–141 (2016).

    ADS  Article  Google Scholar 

  57. 57.

    Glückstad, J. Optical manipulation: sculpting the object. Nat. Photon. 5, 7–8 (2011).

    ADS  Article  Google Scholar 

  58. 58.

    Swartzlander, G. A., Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nat. Photon. 5, 48–51 (2011).

    ADS  Article  Google Scholar 

  59. 59.

    Overton, G. Refractive object generates stable optical lift. Laser Focus World 47, 25–26 (2011).

    Google Scholar 

  60. 60.

    Kaku, M. Optical lift may allow us to steer solar sail spacecrafts and nano devices http://bigthink.com/dr-kakus-universe/optical-lift-may-allow-us-to-steer-solar-sail-spacecrafts-and-nano-devices (7 December 2010).

  61. 61.

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Article  Google Scholar 

  62. 62.

    Serey, X., Mandal, S. & Erickson, D. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials. Nanotechnology 21, 305202 (2010).

    Article  Google Scholar 

  63. 63.

    Mitchem, L. & Reid, J. P. Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap. Chem. Soc. Rev. 37, 756–769 (2008).

    Article  Google Scholar 

  64. 64.

    Optical tweezers—Invented by Arthur Ashkin http://www.edubilla.com/invention/optical-tweezers (accessed July 2018).

  65. 65.

    Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992).

    ADS  Article  Google Scholar 

  66. 66.

    Andrews, D. L. & Bradshaw, D. S. in Optical Nanomanipulation 9-1–9-7 (Morgan & Claypool Publishers, San Rafael, 2016).

    Google Scholar 

  67. 67.

    Jonas, A. & Zemanek, P. Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29, 4813–4851 (2008).

    Article  Google Scholar 

  68. 68.

    A light touch. Nat. Photon. 5, 315 (2011).

  69. 69.

    Smith, B. E. et al. Singlet-oxygen generation from individual semiconducting and metallic nanostructures during near-infrared laser trapping. ACS Photon. 2, 559–564 (2015).

    Article  Google Scholar 

  70. 70.

    Matloff, G. L. The speed limit for graphene interstellar photon sails. JBIS 66, 377–380 (2013).

    ADS  Google Scholar 

  71. 71.

    Rovey, J. L., Friz, P. D., Hu, C., Glascock, M. S. & Yang, X. Plasmonic force space propulsion. J. Spacecraft Rockets 52, 1163–1168 (2015).

    ADS  Article  Google Scholar 

  72. 72.

    England, R. J. Review of laser-driven photonic structure-based particle acceleration. IEEE J. Sel. Top. Quant. Electron. 22, 4401007 (2016).

    Google Scholar 

  73. 73.

    Bar-Lev, D. & Scheuer, J. Plasmonic metasurface for efficient ultrashort pulse laser-driven particle acceleration. Phy. Rev. ST Accel. Beams 17, 121302 (2014).

    ADS  Article  Google Scholar 

  74. 74.

    Pukniel, A., Coverstone, V., Burton, R. & Carroll, D. The dynamics and control of the CubeSail mission: a solar sailing demonstration. Adv. Space Res. 48, 1902–1910 (2011).

    ADS  Article  Google Scholar 

  75. 75.

    Johnson, L., Swartzlander, G. A. & Artusio-Glimpse, A. In Advances in Solar Sailing (ed. Macdonald, M.) 15–23 (Springer-Verlag, Berlin, 2014).

    Google Scholar 

  76. 76.

    Tsuda, Y. et al. Achievement of IKAROS—Japanese deep space solar sail demonstration mission. Acta Astronaut. 82, 183–188 (2013).

    ADS  Article  Google Scholar 

  77. 77.

    Bae, Y. K. Photonic laser propulsion: proof-of-concept demonstration. J. Spacecraft Rockets 45, 153–155 (2008).

    ADS  Article  Google Scholar 

  78. 78.

    Bae, Y. K. in New Frontiers in Space Propulsion (ed. Musha, T.) Ch. 4, 103–132 (Nova Science Publishers, New York, 2015).

  79. 79.

    Popov, S. A., Batrakov, A. V., Kanonykhin, A. V. & Mataibaev, V. Hybrid plasma source based simultaneously on laser ablation and vacuum arc discharge for plasma propulsion. In XXVI Int. Symp. on Discharges and Electrical Insulation in Vacuum 729–732 (2014).

  80. 80.

    Katsurayama, H., Komurasaki, K. & Arakawa, Y. A preliminary study of pulse-laser powered orbital launcher. Acta Astronaut. 65, 1032–1041 (2009).

    ADS  Article  Google Scholar 

  81. 81.

    Zhang, Y., Zhang, D., Wu, J., He, Z. & Zhang, H. A novel laser ablation plasma thruster with electromagnetic acceleration. Acta Astronaut. 127, 438–447 (2016).

    ADS  Article  Google Scholar 

  82. 82.

    Gilster, P. JAXA sail to Jupiter’s trojan asteroids. Centauri Dreams https://www.centauri-dreams.org/2017/03/15/jaxa-sail-to-jupiters-trojan-asteroids (15 March 2017).

  83. 83.

    Myrabo, L. N., Messitt, D. G. & Mead, F. B. Ground and flight tests of a laser propelled vehicle. In 36th AIAA Aerospace Sci. Meeting Exhibit Paper AIAA98-1001 (1998).

  84. 84.

    Roder, P. B. Quantitative Photothermal Heating and Cooling Measurements of Engineered Nanoparticles in an Optical Trap. PhD thesis, Univ. of Washington (2015).

  85. 85.

    White, H. et al. Measurement of impulsive thrust from a closed radio-frequency cavity in vacuum. J. Propul. Power 33, 830–841 (2017).

    Article  Google Scholar 

  86. 86.

    Lemmer, K. Propulsion for CubeSats. Acta Astronaut. 134, 231–243 (2017).

    ADS  Article  Google Scholar 

  87. 87.

    Herdrich, G. et al. Research and development on electric and advanced propulsion at IRS. In 35th Int. Electric Prop. Conf. (IEPC) Paper IEPC-2017-480 (Electric Rocket Propulsion Society, 2017).

  88. 88.

    Sutton, G. P. & Biblarz, O. Rocket Propulsion Elements. 8th edn, (J. Wiley & Sons, Hoboken, 2010; 40.

    Google Scholar 

  89. 89.

    Fasoulas, S., Herdrich, G., Schateikis, T. & Martin, J. High precision attitude control system based on the emission of electromagnetic radiation. In 35th Int. Electric Prop. Conf. (IEPC) Paper IEPC-2017-273 (Electric Rocket Propulsion Society, 2017).

Download references

Acknowledgements

The work was supported in part by the Office for Space Technology and Industry—Space Research Program (OSTIn-SRP/EDB), National Research Foundation, Singapore. I.L. acknowledges the support from the School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Igor Levchenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence should be addressed to I.L.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levchenko, I., Bazaka, K., Mazouffre, S. et al. Prospects and physical mechanisms for photonic space propulsion. Nature Photon 12, 649–657 (2018). https://doi.org/10.1038/s41566-018-0280-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing