Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent storage and manipulation of broadband photons via dynamically controlled Autler–Townes splitting


Photonic quantum information technologies rely on quantum memory for long-lived storage and coherent manipulation of short pulses of non-classical light. The optical quantum memories explored over the past two decades are based on various coherent light–matter interaction schemes, but despite impressive progress, practical memories featuring efficient, broadband and long-lived operation remain elusive, due to the technical demands and inherent limitations of the established schemes. Here, we introduce a technique for high-speed quantum memory and manipulation that overcomes these obstacles. This scheme relies on dynamically controlled absorption of light via the ‘Autler–Townes effect’, which mediates reversible transfer between photonic coherence and the collective ground-state coherence of the storage medium. We experimentally demonstrate proof-of-concept storage and signal processing capabilities of our protocol in a laser-cooled gas of rubidium atoms, including storage of nanoseconds-long single-photon-level laser pulses for up to a microsecond. This approach opens up new avenues in quantum optics, with immediate applications on atomic and solid-state platforms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: ATS quantum memory protocol.
Fig. 2: Theoretical analysis of ATS memory performance versus established memory protocols.
Fig. 3: Experimental demonstration of ATS memory in cold atoms.
Fig. 4: Phase preservation and single-photon level operation.
Fig. 5: Dynamic control of memory bandwidth and temporal shaping of signal pulses.
Fig. 6: Demonstration of temporal-beam-splitting.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

    ADS  Article  Google Scholar 

  2. 2.

    Picque, J. L. & Pinard, J. Direct observation of the Autler–Townes effect in the optical range. J. Phys. B 9, L77–L81 (1976).

    ADS  Article  Google Scholar 

  3. 3.

    He, X. F., Fisk, P. T. H. & Manson, N. B. Autler–Townes effect of the photoexcited diamond nitrogen-vacancy center in its triplet ground state. J. Appl. Phys. 72, 211–217 (1992).

    ADS  Article  Google Scholar 

  4. 4.

    Zhu, Y. F. et al. Vacuum Rabi splitting as a feature of analysis and experimental-observations. Phys. Rev. Lett. 64, 2499–2502 (1990).

    ADS  Article  Google Scholar 

  5. 5.

    Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    ADS  Article  Google Scholar 

  6. 6.

    Bernadot, F., Nussenzveig, P., Brune, M., Raimond, J. M. & Haroche, S. Vacuum Rabi splitting observed on a microscopic atomic sample in a microwave cavity. Europhys. Lett. 17, 33–38 (1992).

    ADS  Article  Google Scholar 

  7. 7.

    Wade, C. G. et al. Probing an excited-state atomic transition using hyperfine quantum-beat spectroscopy. Phys. Rev. A 90, 033424 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Holloway, C. L. et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler–Townes splitting in Rydberg atoms. App. Phys. Lett. 104, 244012 (2014).

    Article  Google Scholar 

  9. 9.

    Ghafoor, F. Autler–Townes multiplet spectroscopy. Laser. Phys. 24, 035702 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Lukin, M. D. Colloquium: trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

    ADS  Article  Google Scholar 

  11. 11.

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    ADS  Article  Google Scholar 

  12. 12.

    Abi-Salloum, T. Y. Electromagnetically induced transparency and Autler-–Townes splitting: two similar but distinct phenomena in two categories of three-level atomic systems. Phys. Rev. A 81, 053836 (2010).

    ADS  Article  Google Scholar 

  13. 13.

    Anisimov, P. M., Dowling, J. P. & Sanders, B. C. Objectively discerning Autler–Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Giner, L. et al. Experimental investigation of the transition between Autler–Townes splitting and electromagnetically-induced-transparency models. Phys. Rev. A 87, 013823 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Tan, C. & Huang, G. Crossover from electromagnetically induced transparency to Autler–Townes splitting in open ladder systems with Doppler broadening. J. Opt. Soc. Am. B 31, 704–715 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Peng, B., Chen, W., Nori, F., Ozdemir, K. O. & Yang, L. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014).

    Article  Google Scholar 

  17. 17.

    Lu, X. et al. Transition from Autler–Townes splitting to electromagnetically induced transparency based on the dynamics of decaying dressed states. J. Phys. B 48, 055003 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    He, L.-Y., Wang, T.-J., Gao, Y.-P., Cao, C. & Wang, C. Discerning electromagnetically induced transparency from Autler–Townes splitting in plasmonic waveguide and coupled resonators system. Opt. Express 23, 23817–23826 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Liao, W.-T., Keitel, C. H. & Pálffy, A. All-electromagnetic control of broadband quantum excitations using gradient photon echoes. Phys. Rev. Lett. 113, 123602 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    ADS  Article  Google Scholar 

  21. 21.

    Hosseini, M. et al. Coherent optical pulse sequencer for quantum applications. Nature 461, 241–245 (2009).

    ADS  Article  Google Scholar 

  22. 22.

    Afzelius, M. et al. Demonstration of atomic frequency comb memory for light with spin-wave storage. Phys. Rev. Lett. 104, 040503 (2010).

    ADS  Article  Google Scholar 

  23. 23.

    Reim, K. F. et al. Towards high-speed optical quantum memories. Nat. Photon. 4, 218–221 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    ADS  Article  Google Scholar 

  25. 25.

    Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–512 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 513–518 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

    ADS  Article  Google Scholar 

  28. 28.

    Pritchard, J. D. et al. Cooperative atom–light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Zhou, Y. et al. Coherent control of a strongly driven silicon vacancy optical transition in diamond. Nat. Commun. 8, 14451 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Siyushev, P. et al. Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B 96, 081201(R) (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Agarwal, G. S. & Huang, S. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010).

  32. 32.

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    ADS  Article  Google Scholar 

  34. 34.

    Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    ADS  Article  Google Scholar 

  35. 35.

    Sillanpää, M. A. et al. Autler–Townes effect in a superconducting three-level system. Phys. Rev. Lett. 103, 193601 (2009).

    ADS  Article  Google Scholar 

  36. 36.

    Abdumalikov, A. A. et al. Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010).

    ADS  Article  Google Scholar 

  37. 37.

    Novikov, S. et al. Autler–Townes splitting in a three-dimensional transmon superconducting qubit. Phys. Rev. B 88, 060503 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Sun, H.-C. et al. Electromagnetically induced transparency and Autler–Townes splitting in superconducting flux quantum circuits. Phys. Rev. A 89, 063822 (2014).

  39. 39.

    Gorshkov, A. V., André, A., Sørensen, A. S. & Lukin, M. D. Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007).

    ADS  Article  Google Scholar 

  40. 40.

    Gorshkov, A. V., André, A., Lukin, M. D. & Sørensen, A. S. Photon storage in Λ-type optically dense atomic media. II. Free-space model. Phys. Rev. A 76, 033804 (2007).

  41. 41.

    Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

    ADS  Article  Google Scholar 

  42. 42.

    Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).

    ADS  Article  Google Scholar 

  43. 43.

    Tittel, W. et al. Photon-echo quantum memory in solid state system. Laser Photon. Rev. 4, 244–267 (2010).

    ADS  Article  Google Scholar 

  44. 44.

    Riedl, S. et al. Bose–Einstein condensate as a quantum memory for a photonic polarization qubit. Phys. Rev. A 85, 022318 (2012).

    ADS  Article  Google Scholar 

  45. 45.

    Cho, Y.-W. et al. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3, 100–107 (2016).

    Article  Google Scholar 

  46. 46.

    Hsiao, Y.-F. et al. Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett. 120, 183602 (2018).

    ADS  Article  Google Scholar 

  47. 47.

    Saglamyurek, E. et al. An integrated processor for photonic quantum states using a broadband light–matter interface. New J. Phys. 16, 065019 (2014).

    ADS  Article  Google Scholar 

  48. 48.

    Reim, K. F. et al. Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout. Phys. Rev. Lett. 108, 263602 (2013).

    ADS  Article  Google Scholar 

  49. 49.

    Campbell, G. T. et al. Configurable unitary transformations and linear logic gates using quantum memories. Phys. Rev. Lett. 113, 063601 (2014).

    ADS  Article  Google Scholar 

  50. 50.

    Lukin, M. D. & Imamoglu, A. Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001).

    ADS  Article  Google Scholar 

  51. 51.

    Nunn, J. et al. Mapping broadband single-photon wave packets into an atomic memory. Phys. Rev. A 75, 011401(R) (2007).

    ADS  Article  Google Scholar 

  52. 52.

    Novikova, I., Phillips, N. B. & Gorshkov, A. V. Optimal light storage with full pulse-shape control. Phys. Rev. A 78, 021802(R) (2008).

  53. 53.

    Nillson, M. & Kroll, S. Solid-state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles. Opt. Commun. 247, 393–403 (2005).

    ADS  Article  Google Scholar 

  54. 54.

    Alexander, A. L., Longdell, J. J., Sellars, M. J. & Manson, N. B. Photon echoes produced by switching electric fields. Phys. Rev. Lett. 96, 043602 (2006).

    ADS  Article  Google Scholar 

  55. 55.

    Kraus, J. B. et al. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening. Phys. Rev. A 73, 020302(R) (2006).

    ADS  Article  Google Scholar 

  56. 56.

    Hetet, G., Longdell, J. J., Alexander, A. L., Lam, P. K. & Sellars, M. J. Electro-optic quantum memory for light using two-level atoms. Phys. Rev. Lett. 100, 023601 (2008).

    ADS  Article  Google Scholar 

  57. 57.

    Nunn, J. et al. Multimode memories in atomic ensembles. Phys. Rev. Lett. 101, 260502 (2008).

    ADS  Article  Google Scholar 

  58. 58.

    Bustard, P. J., England, D. G., Heshami, K., Kupchak, C. & Sussman, B. J. Reducing noise in a Raman quantum memory. Opt. Lett. 41, 5055–5058 (2016).

    ADS  Article  Google Scholar 

  59. 59.

    Nunn, J. et al. Theory of noise suppression in Λ-type quantum memories by means of a cavity. Phys. Rev. A 96, 012338 (2017).

    ADS  Article  Google Scholar 

  60. 60.

    Khan, S., Bharti, V. & Natarajan, V. Role of dressed-state interference in electromagnetically induced transparency. Phys. Lett. A 380, 4100–4104 (2016).

    ADS  Article  Google Scholar 

Download references


We appreciate generous technical support from G. Popowich, P. Davis, S. Wilson, S. Hubele, L. Cooke and the following groups for lending us equipment for our initial measurements: J. Beamish, J. P. Davis, F. Hegmann, A. Lvovsky, W. Tittel, R. Wolkow. We also thank B. Sanders, Y.-C. Chen and C. O’Brien for useful discussions. We gratefully acknowledge funding from the Natural Science and Engineering Research Council of Canada (NSERC RGPIN-2014-06618, STPGP 494024–16), Canada Foundation for Innovation (CFI), Canada Research Chairs Program (CRC), Canadian Institute for Advanced Research (CIFAR), Alberta Innovates — Technology Futures (AITF) and the University of Alberta.

Author information




The ATS memory approach was proposed by E.S. with feedback from K.H. and L.J.L. The project was supervised by L.J.L. and E.S. The ultracold atom apparatus was designed by L.J.L., and it was built and commissioned by L.J.L., T.H. and E.S. The design of the experiments, the measurements and the analysis of the results were performed by E.S. and T.H. The numerical modelling of the ATS memory was performed by K.H. with input from E.S. The simulations and numerical analysis were performed by E.S. and A.R. with the guidance of K.H. The manuscript was written by E.S. and L.J.L. with feedback from all co-authors.

Corresponding authors

Correspondence to Erhan Saglamyurek or Lindsay J. LeBlanc.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saglamyurek, E., Hrushevskyi, T., Rastogi, A. et al. Coherent storage and manipulation of broadband photons via dynamically controlled Autler–Townes splitting. Nature Photon 12, 774–782 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing