Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes

Abstract

Narrow-linewidth lasers and optical frequency combs generated with mode-locked lasers have revolutionized optical frequency metrology. The advent of soliton Kerr frequency combs in compact crystalline or integrated ring optical microresonators has opened new horizons in academic research and industrial applications. These combs, as was naturally assumed, however, require narrow-linewidth, single-frequency pump lasers. We demonstrate that an ordinary cost-effective broadband Fabry–Pérot laser diode at the hundreds of milliwatts level, self-injection-locked to a microresonator, can be efficiently transformed to a powerful single-frequency, ultra-narrow-linewidth light source with further transformation to a coherent soliton comb oscillator. Our findings pave the way to the most compact and inexpensive highly coherent lasers, frequency comb sources, and comb-based devices for mass production.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental scheme and set-up.
Fig. 2: Self-injection locking and spectral narrowing of a multi-frequency diode laser coupled to a MgF2 ultrahigh-Q whispering gallery microresonator.
Fig. 3: Soliton generation with a laser diode.

Data availability

All data used in this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Article  Google Scholar 

  2. 2.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Savchenkov, A. A., Matsko, A. B. & Maleki, L. On frequency combs in monolithic resonators. Nanophotonics 5, 363–391 (2016).

    Article  Google Scholar 

  4. 4.

    Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  5. 5.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Yi, X., Yang, Q., Yang, K. Y., Suh, M. & Vahala, K. J. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  Google Scholar 

  8. 8.

    Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  Google Scholar 

  9. 9.

    Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Fülöp, A. et al. Long-haul coherent communications using microresonator-based frequency combs. Opt. Express 25, 26678–26688 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. (in the press); preprint at https://arXiv.org/abs/1712.09526 (2017).

  19. 19.

    Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. (in the press); preprint at https://arXiv.org/abs/1801.05174 (2018).

  20. 20.

    Lucas, E. et al. Spatial multiplexing of soliton microcombs. Nat. Photon. https://doi.org/10.1038/s41566-018-0256-7 (2018).

  21. 21.

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Imaging soliton dynamics in optical microcavities. Nat. Commun. 9, 3565 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Arafin, S. et al. Power-efficient Kerr frequency comb based tunable optical source. IEEE Photon. J. 9, 6600814 (2017).

    Article  Google Scholar 

  25. 25.

    Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photon. 4, 511–517 (2010).

    ADS  Article  Google Scholar 

  27. 27.

    Soma, D. et al. 10.16-peta-B/s dense SDM/WDM transmission over 6-Mode 19-core fiber across the C+L band. J. Lightwave Technol. 36, 1362–1368 (2018).

    Article  Google Scholar 

  28. 28.

    White, I. M. et al. Refractometric sensors for lab-on-a-chip based on optical ring resonators. IEEE. Sens. J. 7, 28–35 (2007).

    ADS  Article  Google Scholar 

  29. 29.

    Dale, E. et al. Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications. In Imaging and Applied Optics 2014 JTu2C.3 (Optical Society of America, 2014).

  30. 30.

    Lai, W.-C., Chakravarty, S., Wang, X., Lin, C. & Chen, R. T. Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water. Appl. Phys. Lett. 98, 023304 (2011).

    ADS  Article  Google Scholar 

  31. 31.

    Bloom, B. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).

    ADS  Article  Google Scholar 

  32. 32.

    Prtljaga, N. et al. On-chip interference of single photons from an embedded quantum dot and an external laser. Appl. Phys. Lett. 108, 251101 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Aflatouni, F., Abiri, B., Rekhi, A. & Hajimiri, A. Nanophotonic coherent imager. Opt. Express 23, 5117–5125 (2015).

    ADS  Article  Google Scholar 

  34. 34.

    Vasil’ev, V. V. et al. High-coherence diode laser with optical feedback via a microcavity with ‘whispering gallery’ modes. Quantum Electron. 26, 657–658 (1996).

    ADS  Article  Google Scholar 

  35. 35.

    Vassiliev, V. et al. Narrow-line-width diode laser with a high-Q microsphere resonator. Opt. Commun. 158, 305–312 (1998).

    ADS  Article  Google Scholar 

  36. 36.

    Donvalkar, P. S., Savchenkov, A. & Matsko, A. Self-injection locked blue laser. J. Opt. 20, 045801 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Braginsky, V., Gorodetsky, M. & Ilchenko, V. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989).

    ADS  Article  Google Scholar 

  38. 38.

    Ilchenko, V. & Gorodetsky, M. Thermal nonlinear effects in optical whispering gallery microresonators. Laser. Phys. 2, 1004–1009 (1992).

    Google Scholar 

  39. 39.

    Gorodetsky, M. L., Pryamikov, A. D. & Ilchenko, V. S. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B 17, 1051–1057 (2000).

    ADS  Article  Google Scholar 

  40. 40.

    Liang, W. et al. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 6, 7371 (2015).

    Article  Google Scholar 

  41. 41.

    Oraevsky, A. N., Yarovitsky, A. V. & Velichansky, V. L. Frequency stabilisation of a diode laser by a whispering-gallery mode. Quantum. Electron. 31, 897–903 (2001).

    ADS  Article  Google Scholar 

  42. 42.

    Kondratiev, N. M. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167–28178 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Xie, Z. et al. Extended ultrahigh-Q-cavity diode laser. Opt. Lett. 40, 2596–2599 (2015).

    ADS  Article  Google Scholar 

  44. 44.

    Vassiliev, V., Il’ina, S. & Velichansky, V. Diode laser coupled to a high-Q microcavity via a GRIN lens. Appl. Phys. B 76, 521–523 (2003).

    ADS  Article  Google Scholar 

  45. 45.

    Liang, W. et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett. 35, 2822–2824 (2010).

    ADS  Article  Google Scholar 

  46. 46.

    Hensley, J. M. et al. Standoff detection from diffusely scattering surfaces using dual quantum cascade laser comb spectroscopy. In Proc. SPIE 10638, Ultrafast Bandgap Photonics III 1063820 (SPIE, 2018).

  47. 47.

    Shchekin, A. et al. Coherent anti-Stokes Raman scattering under frequency comb excitation. Appl. Opt. 57, 632–638 (2018).

    ADS  Article  Google Scholar 

  48. 48.

    Brasch, V., Geiselmann, M., Pfeiffer, M. H. P. & Kippenberg, T. J. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24, 29312–29320 (2016).

    ADS  Article  Google Scholar 

  49. 49.

    Yi, X., Yang, Q.-F., Youl, K. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Lobanov, V. E. et al. Harmonization of chaos into a soliton in Kerr frequency combs. Opt. Express 24, 27382–27394 (2016).

    ADS  Article  Google Scholar 

  51. 51.

    Gorodetsky, M. L. & Ilchenko, V. S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

    ADS  Article  Google Scholar 

  52. 52.

    Nakagawa, Y. et al. Dispersion tailoring of a crystalline whispering gallery mode microcavity for a wide-spanning optical Kerr frequency comb. J. Opt. Soc. Am. B 33, 1913–1920 (2016).

    ADS  Article  Google Scholar 

  53. 53.

    Ilchenko, V. S. & Maleki, L.. Novel whispering-gallery resonators for lasers, modulators, and sensors. In Proc. SPIE 4270, Laser Resonators IV 4270–11 (SPIE, 2001)..

  54. 54.

    Bogatov, A., Eliseev, P. & Sverdlov, B. Anomalous interaction of spectral modes in a semiconductor laser. IEEE J. Quantum Electron. 11, 510–515 (1975).

    ADS  Article  Google Scholar 

  55. 55.

    Ahmed, M. & Yamada, M. Influence of instantaneous mode competition on the dynamics of semiconductor lasers. IEEE J. Quantum Electron. 38, 682–693 (2002).

    ADS  Article  Google Scholar 

  56. 56.

    Ahmed, M. & Yamada, M. Inducing single-mode oscillation in Fabry–Pérot InGaAsP lasers by applying external optical feedback. IET Optoelectron. 4, 133–141 (2010).

    Article  Google Scholar 

  57. 57.

    Stéphan, G. M., Tam, T. T., Blin, S., Besnard, P. & Têtu, M. Laser line shape and spectral density of frequency noise. Phys. Rev. A 71, 043809 (2005).

    ADS  Article  Google Scholar 

  58. 58.

    Demchenko, Y. A., Bilenko, I. A. & Gorodetsky, M. L. Optimisation of prism coupling with optical whispering-gallery type microresonators. Quantum Electron. 47, 743–747 (2017).

    ADS  Article  Google Scholar 

  59. 59.

    Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This publication was supported by the Russian Science Foundation (17-12-01413). G.V.L., N.G.P. and A.S.V. were partially supported by the Samsung Research Center in Moscow. The authors acknowledge valuable discussions with T. Kippenberg, K. Vahala and V. Vassiliev. The authors thank H.-S. Lee and Y.-G. Roh from the Samsung Advanced Institute of Technologies for help in establishing the project and its further support.

Author information

Affiliations

Authors

Contributions

N.G.P., S.K. and M.L.G conceived the experiments. N.G.P., A.S.V., S.K., G.V.L. and M.L.G. analysed the results. N.G.P., A.S.V., S.K. and A.S.G. performed measurements with diode lasers and G.V.L. performed measurements with fibre lasers. G.V.L., N.G.P. and A.S.V. fabricated devices. S.V.P. and M.R. set the research direction relevant for industrial needs—comb source for wearable spectrometer (Samsung Gear). S.V.P. supervised the project from Samsung. M.L.G. supervised the project. All authors participated in writing the manuscript.

Corresponding author

Correspondence to M. L. Gorodetsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figures and additional information about the work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pavlov, N.G., Koptyaev, S., Lihachev, G.V. et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nature Photon 12, 694–698 (2018). https://doi.org/10.1038/s41566-018-0277-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing