Letter | Published:

Giant broadband refraction in the visible in a ferroelectric perovskite

Nature Photonicsvolume 12pages734738 (2018) | Download Citation


In principle, materials with a broadband giant index of refraction (n > 10) overcome chromatic aberration and shrink the diffraction limit down to the nanoscale, allowing new opportunities for nanoscopic imaging1. They also open alternative avenues for the management of light to improve the performance of photovoltaic cells2. Recent advances have demonstrated the feasibility of a giant refractive index in metamaterials at microwave and terahertz frequencies3,4, but the highest reported broadband index of refraction in the visible is n < 5 (ref. 5). Here, we report a ferroelectric perovskite with an index of refraction of n > 26 across the entire visible spectrum and demonstrate its behaviour using white-light and laser refraction and diffraction experiments. The sample, a solid-solution K0.997Ta0.64Nb0.36:Li0.003 (KTN:Li) perovskite6,7,8,9,10,11,12, has a naturally occurring room-temperature phase that propagates visible light along its normal axis without significant diffraction or chromatic dispersion, irrespective of beam size, intensity and angle of incidence.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

  2. 2.

    Brongersma, M. L., Cui, Y. & Fan, S. Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13, 451–460 (2014).

  3. 3.

    Chang, T. et al. Broadband giant-refractive-index material based on mesoscopic space-filling curves. Nat. Commun. 7, 12661 (2016).

  4. 4.

    Choi, M. et al. A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–374 (2011).

  5. 5.

    Palik, E. D. Handbook of Optical Constants of Solids (Academic Press, Cambridge, 1998).

  6. 6.

    Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

  7. 7.

    Bokov, A. A. & Ye, Z. G. Dielectric relaxation in relaxor ferroelectrics. J. Adv. Dielectrics 2, 1241010 (2012).

  8. 8.

    Shvartsman, V. V. & Lupascu, D. C. Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012).

  9. 9.

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

  10. 10.

    Rahaman, M. M., Imai, T., Sakamoto, T., Tsukada, S. & Kojima, S. Fano resonance of Li-doped KTa1–xNbxO3 single crystals studied by Raman scattering. Sci. Rep. 6, 23898 (2016).

  11. 11.

    Kutnjak, Z. & Pirc, R. Specific heat anomaly in relaxor ferroelectrics and dipolar glasses. J. Appl. Phys. 121, 105107 (2017).

  12. 12.

    Tan, P. et al. Field-driven electro-optic dynamics of polar nanoregions in nanodisordered KTa1−xNbxO3 crystal. Appl. Phys. Lett. 111, 012903 (2017).

  13. 13.

    Pierangeli, D. et al. Super-crystals in composite ferroelectrics. Nat. Commun. 7, 10674 (2016).

  14. 14.

    Ferraro, M. et al. Observation of polarization-maintaining light propagation in depoled compositionally disordered ferroelectrics. Opt. Lett. 42, 3856–3859 (2017).

  15. 15.

    Zhang, X. et al. Abnormal optical anisotropy in correlated disorder KTa1–xNbxO3:Cu with refractive index gradient. Sci. Rep. 8, 2892 (2018).

  16. 16.

    Niu, S. et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photon. 12, 392–396 (2018).

  17. 17.

    DelRe, E., Spinozzi, E., Agranat, A. J. & Conti, C. Scale-free optics and diffractionless waves in nanodisordered ferroelectrics. Nat. Photon. 5, 39–42 (2011).

  18. 18.

    DelRe, E. et al. Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths. Nat. Photon. 9, 228–232 (2015).

  19. 19.

    Di Mei, F. et al. Intrinsic negative mass from nonlinearity. Phys. Rev. Lett. 116, 153902 (2016).

  20. 20.

    Chang, Y. C., Wang, C., Yin, S., Hoffman, R. C. & Mott, A. G. Giant electro-optic effect in nanodisordered KTN crystals. Opt. Lett. 38, 4574–4577 (2013).

  21. 21.

    Pierangeli, D. et al. Observation of an intrinsic nonlinearity in the electro-optic response of freezing relaxors ferroelectrics. Opt. Mater. Express 4, 1487–1493 (2014).

  22. 22.

    Gunter, P. & Hiugnard, J. P. (eds) Photorefractive Materials and Their Applications I (Springer, New York, 2006).

  23. 23.

    DelRe, E., Di Porto, P. & Crosignani, B. Photorefractive solitons and their underlying nonlocal physics. Progr. Opt. 53, 153–200 (2009).

  24. 24.

    Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

  25. 25.

    Mansfield, S. M. & Kino, G. S. Solid immersion microscope. Appl. Phys. Lett. 57, 2615–2616 (1990).

  26. 26.

    Pendry, J. B., Schrurig, D. E. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

  27. 27.

    Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, Cambridge, 2005).

  28. 28.

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 10, 391–401 (2015).

  29. 29.

    Chang, D. E., Vuletic, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).

  30. 30.

    Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

  31. 31.

    Yariv, A. Quantum Electronics (John Wiley & Sons, New York, 1967).

  32. 32.

    Parravicini, J., DelRe, E., Agranat, A. J. & Parravicini, G. B. Liquid-solid directional composites and anisotropic dipolar phases of polar nanoregions in disordered perovskites. Nanoscale 9, 9572 (2017).

  33. 33.

    Bons, P. C., de Haas, R., de Jong, D., Groot, A. & van der Straten, P. Quantum enhancement of the index of refraction in a Bose–Einstein condensate. Phys. Rev. Lett. 116, 173602 (2016).

Download references


The authors acknowledge funding from grants Sapienza 2016/2017 and Lazio Innova 2017. A.J.A. acknowledges the support of the Peter Brojde Center for Innovative Engineering.

Author information

Author notes

    • D. Pierangeli

    Present address: ICL-2DMOST, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China


  1. Dipartimento di Fisica, Università di Roma ‘La Sapienza’, Rome, Italy

    • F. Di Mei
    • , L. Falsi
    • , M. Flammini
    • , D. Pierangeli
    • , P. Di Porto
    •  & E. DelRe
  2. The Brojde Center for Innovative Engineering and Computer Science, The Hebrew University, Jerusalem, Israel

    • A. J. Agranat
  3. ISC-CNR, Università di Roma ‘La Sapienza’, Rome, Italy

    • E. DelRe


  1. Search for F. Di Mei in:

  2. Search for L. Falsi in:

  3. Search for M. Flammini in:

  4. Search for D. Pierangeli in:

  5. Search for P. Di Porto in:

  6. Search for A. J. Agranat in:

  7. Search for E. DelRe in:


F.D.M. and E.D. conceived and designed the experiments. F.D.M., L.F., M.F., D.P., P.D.P. and E.D. carried out the investigation and the experiments. A.J.A. designed and grew the crystal samples. All authors discussed the results and wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to F. Di Mei.

Supplementary information

  1. Supplementary Information

    This file contains additional photographs and analysis.

  2. Supplementary Video 1

    A sequence of videos of the giant refraction effect.

About this article

Publication history