Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal-motion-induced non-reciprocal quantum optical system

Abstract

Magnetic-free optical non-reciprocal components, such as isolators and circulators, are highly desirable for on-chip optical signal processing1,2 and quantum networks3,4. However, their realization presents a fundamental difficulty due to the Lorentz reciprocity in most optical devices5. In this study, we propose and experimentally realize optical non-reciprocity with atoms embedded in a ring cavity at room temperature. Random thermal motion of atoms, in the presence of a unidirectional control field, creates susceptibility–momentum locking, and subsequently a new type of chiral quantum optical system. Furthermore, we demonstrate strong non-reciprocity based on this chiral quantum system in the regime of collectively strong atom–cavity coupling. Our scheme provides a new routine towards the realization of chiral quantum optics and chip-compatible, non-magnetic optical non-reciprocity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermal-motion-induced non-reciprocal chiral quantum optical system.
Fig. 2: Non-reciprocal transmission of the chiral quantum optical system inside a ring cavity.
Fig. 3: Experimental observation of non-reciprocal transmission with warm atoms.
Fig. 4: Experimental observation of reciprocal transmission with cold atoms.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Khanikaev, A. B. & Alù, A. Optical isolators: nonlinear dynamic reciprocity. Nat. Photon. 9, 359–361 (2015).

    Article  ADS  Google Scholar 

  2. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  3. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  ADS  Google Scholar 

  4. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1996).

    Article  ADS  Google Scholar 

  5. Jalas, D. et al. What is — and what is not — an optical isolator. Nat. Photon. 7, 579–582 (2013).

    Article  ADS  Google Scholar 

  6. Estep, N. A., Sounas, D. L., Soric, J. & Alù, A. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys. 10, 923–927 (2014).

    Article  Google Scholar 

  7. Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  8. Sounas, D. L., Caloz, C. & Alù, A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4, 2407 (2013).

    Article  ADS  Google Scholar 

  9. Sounas, D. L. & Alù, A. Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation. ACS Photon. 1, 198–204 (2014).

    Article  Google Scholar 

  10. Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    Article  ADS  Google Scholar 

  11. Chang, L. et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).

    Article  ADS  Google Scholar 

  12. Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Article  Google Scholar 

  13. Shi, Y., Yu, Z. & Fan, S. Limitation of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    Article  ADS  Google Scholar 

  14. Hua, S. et al. Demonstration of a chip-based optical isolator with parametric amplification. Nat. Commun. 7, 13657 (2016).

    Article  ADS  Google Scholar 

  15. Zheng, Y. et al. Optically induced transparency in a micro-cavity. Light Sci. Appl. 5, e16072 (2016).

    Article  Google Scholar 

  16. Wang, D.-W. et al. Optical diode made from a moving photonic crystal. Phys. Rev. Lett. 110, 093901 (2013).

    Article  ADS  Google Scholar 

  17. Horsley, S. A. R., Wu, J.-H., Artoni, M. & La Rocca, G. C. Optical nonreciprocity of cold atom Bragg mirrors in motion. Phys. Rev. Lett. 110, 223602 (2013).

    Article  ADS  Google Scholar 

  18. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

  19. Hafezi, M. & Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012).

    Article  ADS  Google Scholar 

  20. Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

    Article  ADS  Google Scholar 

  21. Ruesink, F., Miri, M.-A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    Article  ADS  Google Scholar 

  22. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    Article  ADS  Google Scholar 

  23. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article  ADS  Google Scholar 

  24. Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    Article  ADS  Google Scholar 

  25. Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015).

    Google Scholar 

  26. Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577–1580 (2016).

    Article  ADS  Google Scholar 

  27. Xia, K. et al. Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling. Phys. Rev. A 90, 043802 (2014).

  28. Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotech. 10, 775–778 (2015).

    Article  ADS  Google Scholar 

  29. Gea-Banacloche, J., Li, Y.-Q., Jin, S.-Z. & Xiao, M. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment. Phys. Rev. A 51, 576–584 (1995).

    Article  ADS  Google Scholar 

  30. Xiao, M., Li, Y.-Q., Jin, S.-Z. & Gea-Banacloche, J. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666–669 (1995).

    Article  ADS  Google Scholar 

  31. Wu, H., Gea-Banacloche, J. & Xiao, M. Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium. Phys. Rev. Lett. 100, 173602 (2008).

    Article  ADS  Google Scholar 

  32. Aspect, A., Arimondom, E., Kaiser, R., Vansteenkiste, N. & Cohen-Tannoudj, C. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826–829 (1988).

    Article  ADS  Google Scholar 

  33. Höckel, D. & Benson, O. Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level. Phys. Rev. Lett. 105, 103605 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant no. 2017YFA0303703), the National Natural Science Foundation of China (grant nos. 11474092, 11774089 and 11674094) and Shanghai Natural Science Foundation (grant nos. 17ZR1442700 and 18ZR1410500).

Author information

Authors and Affiliations

Authors

Contributions

G.L., Y.N. and K.X. contributed to the original idea, and supervised the experiment. S.Z. and Y.H. conducted the experiment and partly contributed to refining the idea. They contributed equally to this work. S.G. supervised the whole project. All authors contributed to discussions of the results and writing of the manuscript.

Corresponding authors

Correspondence to Gongwei Lin, Yueping Niu or Keyu Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Hu, Y., Lin, G. et al. Thermal-motion-induced non-reciprocal quantum optical system. Nature Photon 12, 744–748 (2018). https://doi.org/10.1038/s41566-018-0269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0269-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing