Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tri-comb spectroscopy

Abstract

Multidimensional coherent spectroscopy (MDCS)1,2 is a powerful method that enables the measurement of homogeneous linewidths in inhomogenously broadened systems, many-body interactions and coupling between excited resonances, all of which are not simultaneously accessible by any other method. Current implementations of MDCS require a bulky apparatus and suffer from resolution and acquisition speed limitations that constrain their applications outside the laboratory3,4,5. Here, we propose and demonstrate an approach to nonlinear coherent spectroscopy that utilizes three slightly different repetition-rate frequency combs. Unlike traditional nonlinear methods, tri-comb spectroscopy uses only a single photodetector and no mechanical moving elements to enable faster acquisition times, while also providing comb resolution. As a proof of concept, a multidimensional coherent spectrum with comb cross-diagonal resolution is generated using only 365 ms of data. These improvements make MDCS relevant for systems with narrow resonances and it has the potential to be field deployable for chemical-sensing applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental set-up.
Fig. 2: Photon echo scan.
Fig. 3: Results.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Cundiff, S. T. Coherent spectroscopy of semiconductors. Opt. Express 16, 4639–4664 (2008).

    ADS  Article  Google Scholar 

  2. 2.

    Hamm, P. & Zanni, M. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge Univ. Press, New York, 2011).

  3. 3.

    Draeger, S., Roeding, S. & Brixner, T. Rapid-scan coherent 2D fluorescence spectroscopy. Opt. Express 25, 3259–3267 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Fuller, F. D., Wilcox, D. E. & Ogilvie, J. P. Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry. Opt. Express 22, 1018–1027 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Harel, E., Fidler, A. F. & Engel, G. S. Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy. Proc. Natl Acad. Sci. USA 107, 16444–16447 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

    Article  Google Scholar 

  7. 7.

    Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    Baumann, E. et al. Spectroscopy of the methane with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A 84, 062513 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photon. 4, 55–57 (2010).

    ADS  Article  Google Scholar 

  13. 13.

    Boudreau, S., Levasseur, S., Perilla, C., Roy, S. & Genest, J. Chemical detection with hyperspectral lidar using dual frequency combs. Opt. Express 21, 7411–7418 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt. Express 14, 11222–11233 (2006).

    ADS  Article  Google Scholar 

  15. 15.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Lomsadze, B. & Cundiff, S. T. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science 357, 1389–1391 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Cundiff, S. T. Optical two-dimensional Fourier transform spectroscopy of semiconductor nanostructures [Invited]. J. Opt. Soc. Am. B 29, A69–A81 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Kurnit, N. A., Abella, I. D. & Hartmann, S. R. Observation of a photon echo. Phys. Rev. Lett. 13, 567–568 (1964).

    ADS  Article  Google Scholar 

  20. 20.

    Boyd, R. W. Nonlinear Optics 3rd edn (Academic Press, New York, 2008).

  21. 21.

    Tekavec, P. F., Lott, G. A. & Marcus, A. H. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J. Chem. Phys. 127, 214307 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    Lomsadze, B. & Cundiff, S. T. Multi-heterodyne two dimensional coherent spectroscopy using frequency combs. Sci. Rep. 7, 14018 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Asahara, A. & Minoshima, K. Development of ultrafast time-resolved dual-comb spectroscopy. APL Photon. 2, 041301 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Lomsadze, B. & Cundiff, S. T. Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole–dipole interactions. Phys. Rev. Lett. 120, 233401 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Lomsadze, B. & Cundiff, S. T. Frequency comb-based four-wave-mixing spectroscopy. Opt. Lett. 42, 2346–2349 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Siemens, M. E., Moody, G., Li, H., Bristow, A. D. & Cundiff, S. T. Resonance lineshapes in two-dimensional Fourier transform spectroscopy. Opt. Express 18, 17699–17708 (2010).

    ADS  Article  Google Scholar 

  27. 27.

    Sinclair, L. C. et al. Invited article: a compact optically coherent fiber frequency comb. Rev. Sci. Instrum. 86, 081301 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Zhao, X. et al. Dead-band-free, high-resolution microwave frequency measurement using a free-running triple-comb fiber laser. IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

    ADS  Google Scholar 

  29. 29.

    Lucas, E. et al. Spatial multiplexing of soliton microcombs. Nat. Photon. https://doi.org/10.1038/s41566-018-0256-7 (2018).

Download references

Acknowledgements

The research is based on work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via contract 2018-18020600001. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA or the US government. B.C.S. acknowledges support by the National Science Foundation through a Graduate Research Fellowship (1256260).

Author information

Affiliations

Authors

Contributions

B.L. and S.T.C. conceived the concept. B.L. and B.C.S. ran the experiment and took the data. B.L. analysed the results and wrote the manuscript. All authors discussed the results and commented on the manuscript at all stages.

Corresponding author

Correspondence to Steven T. Cundiff.

Ethics declarations

Competing interests

B.L. and S.T.C. are coinventors on patent application 15/705511 submitted by the University of Michigan that covers ‘Frequency comb-based multidimensional coherent spectroscopy’.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains supplementary figures and additional information about the work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lomsadze, B., Smith, B.C. & Cundiff, S.T. Tri-comb spectroscopy. Nature Photon 12, 676–680 (2018). https://doi.org/10.1038/s41566-018-0267-4

Download citation

Further reading

Search

Quick links