Synchronization of coupled optical microresonators

Abstract

The phenomenon of synchronization occurs universally across the natural sciences and provides critical insight into the behaviour of coupled nonlinear dynamical systems. It also offers a powerful approach to robust frequency or temporal locking in diverse applications including communications, superconductors and photonics. Here, we report the experimental synchronization of two coupled soliton mode-locked chip-based frequency combs separated over distances of 20 m. We show that such a system obeys the universal Kuramoto model for synchronization and that the cavity solitons from the microresonators can be coherently combined, which overcomes the fundamental power limit of microresonator-based combs. This study could significantly expand the applications of microresonator combs, and with its capability for massive integration it offers a chip-based photonic platform for exploring complex nonlinear systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of the synchronization of microresonator combs.
Fig. 2: Dynamics of synchronization.
Fig. 3: Characterization of synchronization behaviour.
Fig. 4: Demonstration of coherent comb combining.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Buck, J. Synchronous rhythmic flashing of fireflies. II. Q. Rev. Biol. 63, 265–289 (1988).

    Article  Google Scholar 

  3. 3.

    Michaels, D. C., Matyas, E. P. & Jalife, J. Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circ. Res. 61, 704–714 (1987).

    Article  Google Scholar 

  4. 4.

    Wiesenfeld, K., Colet, P. & Strogatz, S. H. Synchronization transitions in a disordered Josephson series array. Phys. Rev. Lett. 76, 404–407 (1996).

    ADS  Article  Google Scholar 

  5. 5.

    York, R. A. & Compton, R. C. Quasi-optical power combining using mutually synchronized oscillator arrays. IEEE Trans. Microwave Theory Tech. 39, 1000–1009 (1991).

    ADS  Article  Google Scholar 

  6. 6.

    Ramirez, J. P., Olvera, L. A., Nijmeijer, H. & Alvarez, J. The sympathy of two pendulum clocks: beyond Huygens observations. Sci. Rep. 6, 23580 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. In Proc. Int. Symp. Mathematical Problems in Theoretical Physics (ed. Araki, H.) 420–422 (Springer, Berlin, 1975).

  8. 8.

    Nixon, M. et al. Controlling synchronization in large laser networks. Phys. Rev. Lett. 108, 214101 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Cheo, P. K., Liu, A. & King, G. G. A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array. IEEE Photon. Technol. Lett. 13, 439–441 (2001).

    ADS  Article  Google Scholar 

  10. 10.

    Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Article  Google Scholar 

  11. 11.

    Cundiff, S. T. & Ye, J. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135 (2006).

    ADS  Article  Google Scholar 

  13. 13.

    Newbury, N. R. Searching for applications with a fine-tooth comb.Nat. Photon. 5, 186–188 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Article  Google Scholar 

  15. 15.

    Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

    ADS  Article  Google Scholar 

  17. 17.

    Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photon. 4, 41–45 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Leo, F., Gelens, L., Emplit, P., Haelterman, M. & Coen, S. Dynamics of one-dimensional Kerr cavity solitons. Opt. Express 21, 9180–9191 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Parra-Rivas, P., Gomila, D., Matías, M. A., Coen, S. & Gelens, L. Dynamics of localized and patterned structures in the Lugiato–Lefever equation determine the stability and shape of optical frequency combs. Phys. Rev. A 89, 043813 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Anderson, M., Leo, F., Coen, S., Erkintalo, M. & Murdoch, S. G. Observation of spatiotemporal instabilities of temporal cavity solitons. Optica 3, 1071–1074 (2016).

    Article  Google Scholar 

  22. 22.

    Bao, C. et al. Observation of Fermi–Pasta–Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett. 117, 163901 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Yu, M. et al. Breather soliton dynamics in microresonators. Nat. Commun. 8, 14569 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. L. & Kippenberg, T. J. Breathing dissipative solitons in optical microresonators. Nat. Commun. 8, 736 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Del’Haye, P. et al. Phase steps and resonator detuning measurements in microresonator frequency combs. Nat. Commun. 6, 5668 (2015).

    Article  Google Scholar 

  30. 30.

    Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  Google Scholar 

  31. 31.

    Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  Google Scholar 

  32. 32.

    Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Webb, K. E., Erkintalo, M., Coen, S. & Murdoch, S. G. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Opt. Lett. 41, 4613–4616 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).

    Article  Google Scholar 

  36. 36.

    Joshi, C. et al. Counter-rotating cavity solitons in a silicon nitride microresonator. Opt. Lett. 43, 547–550 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Papp, S. B., Del’Haye, P. & Diddams, S. A. Parametric seeding of a microresonator optical frequency comb. Opt. Express 21, 17615–17624 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Article  Google Scholar 

  39. 39.

    Wen, Y. H., Lamont, M. R. E. & Gaeta, A. L. Synchronization of multiple parametric frequency combs. OSA Technical Digest Paper FW1D.4 (2014).

  40. 40.

    Munns, J. H. D., Walmsley, I. A. & Wen, Y. H. Novel interactions of dissipative Kerr solitons in nonlinear cavity networks. In Proc. European Conf. Lasers and Electro-Optics and European Quantum Electronics Conferences EF_1_1 (OSA, Washington DC, 2017).

  41. 41.

    Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209 (1987).

    ADS  Article  Google Scholar 

  42. 42.

    Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    ADS  Article  Google Scholar 

  43. 43.

    Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    ADS  Article  Google Scholar 

  44. 44.

    Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

    ADS  Article  Google Scholar 

  45. 45.

    Levy, J. S. et al. High-performance silicon-nitride-based multiple-wavelength source. IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).

    ADS  Article  Google Scholar 

  46. 46.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Article  Google Scholar 

  47. 47.

    Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    ADS  Article  Google Scholar 

  48. 48.

    Adler, R. A study of locking phenomena in oscillators. Proc. IRE 34, 351–357 (1946).

    Article  Google Scholar 

  49. 49.

    Del’Haye, P., Beha, K., Papp, S. B. & Diddams, S. A. Self-injection locking and phase-locked states in microresonators-based optical frequency combs. Phys. Rev. Lett. 112, 043905 (2014).

    ADS  Article  Google Scholar 

  50. 50.

    Taheri, H., Eftekhar, A. A., Wiesenfeld, K. & Adibi, A. Anatomy of phase locking in hyperparametric oscillations based on Kerr nonlinearity. IEEE Photon. J. 9, 6100911 (2017).

    Article  Google Scholar 

  51. 51.

    Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, New York, 2000)..

    Google Scholar 

  52. 52.

    Xue, X. et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt. Express 24, 687–698 (2016).

    ADS  Article  Google Scholar 

  53. 53.

    Wen, Y. H., Lamont, M. R. E., Strogatz, S. H. & Gaeta, A. L. Self-organization in Kerr-cavity-soliton formation in parametric frequency combs. Phys. Rev. A 94, 063843 (2016).

    ADS  Article  Google Scholar 

  54. 54.

    Taheri, H., Del’Haye, P., Eftekhar, A. A., Wiesenfeld, K. & Adibi, A. Self-synchronization phenomena in the Lugiato–Lefever equation. Phys. Rev. A 96, 013828 (2017).

    ADS  Article  Google Scholar 

  55. 55.

    Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (AFOSR) (grant no. FA9550-15-1-0303), the National Science Foundation (NSF) (grant no. CCF-1640108) and the Semiconductor Research Corporation (SRC) (grant no. SRS 2016-EP-2693-A). The authors also thank K. Bergman and R. Polster for lending the high-resolution optical spectrum analyser and autocorrelator.

Author information

Affiliations

Authors

Contributions

J.K.J. and A.K. performed experiment. J.K.J carried out theoretical analysis and numerical simulation, and wrote the manuscript with inputs from all authors. J.K.J., A.K., Y.O. and A.L.G. contributed to the interpretation of data. X.J. fabricated the devices under the supervision of M.L. A.L.G. supervised the overall project.

Corresponding author

Correspondence to Alexander L. Gaeta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains supplementary figures and additional information about the work

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jang, J.K., Klenner, A., Ji, X. et al. Synchronization of coupled optical microresonators. Nature Photon 12, 688–693 (2018). https://doi.org/10.1038/s41566-018-0261-x

Download citation

Further reading