Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices

Abstract

Perovskite quantum dots have significant potential for light-emitting devices because of their high colour purity and colour tunability in the visible spectrum. Here, we report highly efficient red perovskite quantum dot-based light-emitting devices. The quantum dots were fabricated by anion exchange from pristine CsPbBr3 using halide-anion-containing alkyl ammonium and aryl ammonium salts. Anion-exchange quantum dots based on ammonium iodine salts exhibited a strong redshift from green emission to a deep-red emission at 649 nm as well as higher photoluminescence quantum yields. Furthermore, the quantum dot-based light-emitting device with the alkyl ammonium iodine salt exhibited an external quantum efficiency of 21.3% and high colour purity, with Commission Internationale de l’Eclairage coordinates of (0.72, 0.28), while the light-emitting device with the aryl ammonium iodine salt showed an external quantum efficiency of 14.1%. Finally, the operational stability of the latter was 36 times higher because the surface ligand density of the corresponding quantum dots was lower.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme of anion-exchange of synthesized pristine CsPbBr3 perovskite QDs using long alkyl ammonium and aryl ammonium.
Fig. 2: Chemical composition and surface ligands of perovskite QDs.
Fig. 3: Nanocrystal structures and optical properties of perovskite QDs.
Fig. 4: Morphologies of perovskite QD films.
Fig. 5: Characteristics of perovskite QD LEDs.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotech. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  2. Kim, Y. H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    Article  Google Scholar 

  3. Sadhanala, A. et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15, 6095–6101 (2015).

    Article  ADS  Google Scholar 

  4. Veldhuis, S. A. et al. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28, 6804–6834 (2016).

    Article  Google Scholar 

  5. Shan, Q. et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small 13, 1701770 (2017).

    Article  Google Scholar 

  6. Kumar, S. et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 10, 9720–9729 (2016).

    Article  Google Scholar 

  7. Zhang, L. Q. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 8, 15640 (2017).

    Article  ADS  Google Scholar 

  8. Li, G. et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015).

    Article  ADS  Google Scholar 

  9. Wang, J. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015).

    Article  Google Scholar 

  10. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  ADS  Google Scholar 

  11. Wang, N. N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  ADS  Google Scholar 

  12. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article  ADS  Google Scholar 

  13. Zhang, S. T. et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells. Adv. Mater. 29, 1606600 (2017).

    Article  Google Scholar 

  14. Meng, L. et al. Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage. Adv. Mater. 29, 1603826 (2017).

    Article  Google Scholar 

  15. Yuan, M. J. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotech. 11, 872–877 (2016).

    Article  ADS  Google Scholar 

  16. Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017).

    Article  ADS  Google Scholar 

  17. Blancon, J. C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1291 (2017).

    Article  ADS  Google Scholar 

  18. Yang, X. L. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 1169 (2018).

    Article  ADS  Google Scholar 

  19. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  ADS  Google Scholar 

  20. De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Article  Google Scholar 

  21. Swarnkar, A. et al. Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew. Chem. Int. Ed. 54, 15424–15428 (2015).

    Article  Google Scholar 

  22. Jellicoe, T. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138, 2941–2944 (2016).

    Article  Google Scholar 

  23. Li, X. M. et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016).

    Article  ADS  Google Scholar 

  24. Pan, J. et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission. J. Phys. Chem. Lett. 6, 5027–5033 (2015).

    Article  Google Scholar 

  25. Leng, M. et al. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew. Chem. Int. Ed. 55, 15012–15016 (2016).

    Article  Google Scholar 

  26. Pan, A. Z. et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10, 7943–7954 (2016).

    Article  Google Scholar 

  27. Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015).

    Article  Google Scholar 

  28. Li, G. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528–3534 (2016).

    Article  ADS  Google Scholar 

  29. Pan, J. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016).

    Article  Google Scholar 

  30. Li, J. et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29, 1603885 (2017).

    Article  Google Scholar 

  31. Chiba, T. et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 9, 18054–18060 (2017).

    Article  Google Scholar 

  32. Krieg, F. et al. Colloidal CsPbX3 (X = CI, Br, I) Nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3, 641–646 (2018).

    Article  Google Scholar 

  33. Tan, Y. S. et al. Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 10, 3784–3792 (2018).

    Article  Google Scholar 

  34. Pan, J. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 140, 562–565 (2018).

    Article  Google Scholar 

  35. Wu, C. et al. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment. Adv. Funct. Mater. 27, 1700338 (2017).

    Article  Google Scholar 

  36. Zhang, X. L. et al. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3–CsPb2Br5 composites. Adv. Funct. Mater. 26, 4595–4600 (2016).

    Article  Google Scholar 

  37. Zhang, X. et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 16, 1415–1420 (2016).

    Article  ADS  Google Scholar 

  38. Liu, P. Z. et al. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem. Mater. 29, 5168–5173 (2017).

    Article  Google Scholar 

  39. Yassitepe, E. et al. Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 26, 8757–8763 (2016).

    Article  Google Scholar 

  40. Davis, N. J. L. K. et al. Photon reabsorption in mixed CsPbCl3:CsPbl3 perovskite nanocrystal films for light-emitting diodes. J. Phys. Chem. C 121, 3790–3796 (2017).

    Article  Google Scholar 

  41. Zou, C., Huang, C. Y., Sanehira, E. M., Luther, J. M. & Lin, L. Y. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes. Nanotechnology 28, 455201 (2017).

    Article  Google Scholar 

  42. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  ADS  Google Scholar 

  43. Zhang, X. et al. Bright perovskite nanocrystal films for efficient light-emitting devices. J. Phys. Chem. Lett. 7, 4602–4610 (2016).

    Article  Google Scholar 

  44. Nedelcu, G. et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015).

    Article  ADS  Google Scholar 

  45. Akkerman, Q. A. et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015).

    Article  Google Scholar 

  46. Ramasamy, P. et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52, 2067–2070 (2016).

    Article  Google Scholar 

  47. Vashishtha, P. & Halpert, J. E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 29, 5965–5973 (2017).

    Article  Google Scholar 

  48. Koscher, B. A., Swabeck, J. K., Bronstein, N. D. & Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 139, 6566–6569 (2017).

    Article  Google Scholar 

  49. Kumar, S. et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving Recommendation 2020 Color Coordinates. Nano Lett. 17, 5277–5284 (2017).

    Article  ADS  Google Scholar 

  50. Li, X. Y. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge a ‘Grant-in Aid for Scientific Research A’ (grant no. 15H02203) from the Japan Society for the Promotion of Science (JSPS). The authors also thank the Center of Innovation Program and the Strategic Promotion of Innovative R&D Program of the Japan Science and Technology Agency (JST). The authors thank Y. Watanabe and K. Udagawa for help.

Author information

Authors and Affiliations

Authors

Contributions

T.C. conceived and designed the experiments. Y.H. and J.S. fabricated the devices. Y.H., H.E. and K.H. performed the TEM, SEM, AFM, UV–vis absorption, photoluminescence and photoluminescence lifetime measurements. H.E. performed the XRD measurements. T.C. and S.O. performed the XPS and UPS measurements. Y.H. and S.S. developed and performed the anion-exchange process. T.C. and Y.J.P. assisted with the materials and LED characterization process. J.K. supervised this work. T.C. wrote the manuscript. All the authors have read and commented on the manuscript.

Corresponding authors

Correspondence to Takayuki Chiba or Junji Kido.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiba, T., Hayashi, Y., Ebe, H. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photon 12, 681–687 (2018). https://doi.org/10.1038/s41566-018-0260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0260-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing