Abstract

Dual-comb interferometry utilizes two optical frequency combs to map the optical field’s spectrum to a radio-frequency signal without using moving parts, allowing improved speed and accuracy. However, the method is compounded by the complexity and demanding stability associated with operating multiple laser frequency combs. To overcome these challenges, we demonstrate simultaneous generation of multiple frequency combs from a single optical microresonator and a single continuous-wave laser. Similar to space-division multiplexing, we generate several dissipative Kerr soliton states—circulating solitonic pulses driven by a continuous-wave laser—in different spatial (or polarization) modes of a MgF2 microresonator. Up to three distinct combs are produced simultaneously, featuring excellent mutual coherence and substantial repetition rate differences, useful for fast acquisition and efficient rejection of soliton intermodulation products. Dual-comb spectroscopy with amplitude and phase retrieval, as well as optical sampling of a breathing soliton, is realized with the free-running system. Compatibility with photonic-integrated resonators could enable the deployment of dual- and triple-comb-based methods to applications where they remained impractical with current technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The code and data used to produce the plots within this paper are available at https://doi.org/10.5281/zenodo.1321270. All other data used in this study are available from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Hansch, T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

  2. 2.

    Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

  3. 3.

    Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

  4. 4.

    Schliesser, A., Brehm, M., Keilmann, F. & van der Weide, D. W. D. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

  5. 5.

    Ideguchi, T., Poisson, A., Guelachvili, G., Picqué, N. & Hänsch, T. W. Adaptive real-time dual-comb spectroscopy. Nat. Commun. 5, 3375 (2014).

  6. 6.

    Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).

  7. 7.

    Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements. Nat. Photon. 3, 351–356 (2009).

  8. 8.

    Sinclair, L. C. et al. Comparing optical oscillators across the air to milliradians in phase and 10–17 in frequency. Phys. Rev. Lett. 120, 050801 (2018).

  9. 9.

    Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

  10. 10.

    Ataie, V., Esman, D., Kuo, B. P.-P., Alic, N. & Radic, S. Subnoise detection of a fast random event. Science 350, 1343–1345 (2015).

  11. 11.

    Link, S. M., Maas, D. J. H. C., Waldburger, D. & Keller, U. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science 356, 1164–1168 (2017).

  12. 12.

    Carlson, D. R., Hickstein, D. D., Cole, D. C., Diddams, S. A. & Papp, S. B. Dual-comb interferometry via repetition rate switching of a single frequency comb. Opt. Lett. 43, 3614–3617 (2018).

  13. 13.

    Millot, G. et al. Frequency-agile dual-comb spectroscopy. Nat. Photon. 10, 27–30 (2015).

  14. 14.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

  15. 15.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2013).

  16. 16.

    Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

  17. 17.

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

  18. 18.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2015).

  19. 19.

    Skryabin, D. V. Soliton self-frequency shift cancellation in photonic crystal fibers. Science 301, 1705–1708 (2003).

  20. 20.

    Karpov, M. et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett. 116, 103902 (2016).

  21. 21.

    Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. L. & Kippenberg, T. J. Breathing dissipative solitons in optical microresonators. Nat. Commun. 8, 736 (2017).

  22. 22.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

  23. 23.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

  24. 24.

    Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Preprint at http://arxiv.org/abs/1801.05174 (2018).

  25. 25.

    Obrzud, E. et al. A microphotonic astrocomb. Preprint at http://arxiv.org/abs/1712.09526 (2017).

  26. 26.

    Jost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

  27. 27.

    Brasch, V., Lucas, E., Jost, J. D., Geiselmann, M. & Kippenberg, T. J. Self-referenced photonic chip soliton Kerr frequency comb. Light Sci. Appl. 6, e16202 (2017).

  28. 28.

    Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

  29. 29.

    Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

  30. 30.

    Suh, M. G., Yang, Q. F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

  31. 31.

    Pavlov, N. G. et al. Soliton dual frequency combs in crystalline microresonators. Opt. Lett. 42, 514–517 (2017).

  32. 32.

    Joshi, C. et al. Counter-rotating cavity solitons in a silicon nitride microresonator. Opt. Lett. 43, 547–550 (2018).

  33. 33.

    Yang, Q. F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).

  34. 34.

    Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photon. 7, 354–362 (2013).

  35. 35.

    Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

  36. 36.

    Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

  37. 37.

    Matsko, A. B., Liang, W., Savchenkov, A. A., Eliyahu, D. & Maleki, L. Optical Cherenkov radiation in overmoded microresonators. Opt. Lett. 41, 2907–2910 (2016).

  38. 38.

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators. Optica 3, 1132–1135 (2016).

  39. 39.

    Lucas, E., Guo, H., Jost, J. D., Karpov, M. & Kippenberg, T. J. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A 95, 043822 (2017).

  40. 40.

    Lucas, E., Jost, J. D., Beha, K., Holzwarth, R. & Kippenberg, T. Soliton-based optical Kerr frequency comb for low-noise microwave generation. In 2017 IEEE Int. Frequency Control Symposium 530–533 (IEEE, 2017).

  41. 41.

    Guo, H. et al. Intermode breather solitons in optical microresonators. Phys. Rev. X 7, 041055 (2017).

  42. 42.

    Yang, Q. F., Yi, X., Yang, K. Y. & Vahala, K. Stokes solitons in optical microcavities. Nat. Phys. 13, 53–57 (2017).

  43. 43.

    Bao, C. et al. Orthogonally polarized Kerr frequency combs. Preprint at http://arxiv.org/abs/1705.05045 (2017).

  44. 44.

    Donvalkar, P. et al. Broadband frequency comb generation in the near-visible using higher-order modes in silicon nitride microresonators. In Conference on Lasers and Electro-Optics STu4J.5 (OSA, 2017).

  45. 45.

    Zhao, X. et al. Dual comb generation in a single microresonator. In Conference on Lasers and Electro-Optics STh3L.4 (OSA, 2017).

  46. 46.

    Lomsadze, B., Smith, B. C. & Cundiff, S. T. Tri-comb spectroscopy. Nat. Photon. https://doi.org/10.1038/s41566-018-0267-4 (2018).

  47. 47.

    Cundiff, S. T. & Mukamel, S. Optical multidimensional coherent spectroscopy. Phys. Today 66, 44–49 (2013).

  48. 48.

    Zhao, X., Qu, X., Zhang, F., Zhao, Y. & Tang, G. Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb. Opt. Lett. 43, 807–810 (2018).

  49. 49.

    Izutsu, M., Shikama, S. & Sueta, T. Integrated optical SSB modulator/frequency shifter. IEEE J. Quantum Electron. 17, 2225–2227 (1981).

  50. 50.

    Coddington, I., Swann, W. C. & Newbury, N. R. Coherent linear optical sampling at 15 bits of resolution. Opt. Lett. 34, 2153–2155 (2009).

  51. 51.

    Bao, C. et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett. 117, 163901 (2016).

  52. 52.

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Imaging soliton dynamics in optical microcavities. Preprint at http://arxiv.org/abs/1805.07629 (2018).

  53. 53.

    Lomsadze, B. & Cundiff, S. T. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science 357, 1389–1391 (2017).

  54. 54.

    Esman, D., Ataie, V., Kuo, B. P.-P., Alic, N. & Radic, S. Subnoise signal detection and communication. J. Lightwave Technol. 34, 5214–5219 (2016).

  55. 55.

    Kim, S. et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun. 8, 372 (2017).

  56. 56.

    Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

  57. 57.

    Liu, J. et al. Ultralow-power photonic chip-based soliton frequency combs. Preprint at http://arxiv.org/abs/1805.00069 (2018).

  58. 58.

    Lee, S. H. et al. Towards visible soliton microcomb generation. Nat. Commun. 8, 1295 (2017).

  59. 59.

    Karpov, M., Pfeiffer, M. H. P., Liu, J., Lukashchuk, A. & Kippenberg, T. J. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun. 9, 1146 (2018).

  60. 60.

    Grudinin, I. S. & Yu, N. Dispersion engineering of crystalline resonators via microstructuring. Optica 2, 221–224 (2015).

  61. 61.

    Humphrey, M. J. Calculation of Coupling Between Tapered Fiber Modes and Whispering-Gallery Modes of a Spherical Microlaser. PhD thesis, Oklahoma State Univ. 59 (2005).

  62. 62.

    Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Opt. Express 23, 30557–30569 (2015).

Download references

Acknowledgements

The authors thank N. Newbury for important suggestions and comments. The authors thank J. D. Jost and W. Weng for their assistance as well as J. Liu, H. Guo, N. J. Engelsen and M. Anderson for their feedback on the manuscript. This publication was supported by funding from the Swiss National Science Foundation under grant agreement 163864, by the Air Force Office of Scientific Research, Air Force Material Command, USAF under award no. FA9550-15-1-0099, and by the Ministry of Education and Science of the Russian Federation under project RFMEFI58516X0005. E.L. acknowledges the support of the European Space Technology Centre with ESA contract no. 4000118777/16/NL/GM.

Author information

Affiliations

  1. IPHYS, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

    • E. Lucas
    • , R. Bouchand
    • , A. S. Raja
    • , M. Karpov
    •  & T. J. Kippenberg
  2. Russian Quantum Centre, Skolkovo, Russia

    • G. Lihachev
    • , N. G. Pavlov
    •  & M. L. Gorodetsky
  3. Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

    • G. Lihachev
    •  & M. L. Gorodetsky
  4. Moscow Institute of Physics and Technology, Dolgoprudny, Russia

    • N. G. Pavlov

Authors

  1. Search for E. Lucas in:

  2. Search for G. Lihachev in:

  3. Search for R. Bouchand in:

  4. Search for N. G. Pavlov in:

  5. Search for A. S. Raja in:

  6. Search for M. Karpov in:

  7. Search for M. L. Gorodetsky in:

  8. Search for T. J. Kippenberg in:

Contributions

E.L. and G.L. designed the experimental set-up. E.L. performed the experiments and analysed the data. G.L. fabricated the device, with assistance from N.G.P. E.L., R.B. and A.S.R. performed the experimental comb linewidth measurement. M.K. and A.S.R. assembled the RF components for the single sideband modulator driving. E.L. wrote the manuscript, with input from the other authors. T.J.K. and M.L.G. supervised the project.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to E. Lucas or T. J. Kippenberg.

Supplementary information

  1. Supplementary Information

    This file contains supplementary figures and additional information about the work.

  2. Supplementary Video 1

    This movie shows the spectrum of an animated breathing soliton.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41566-018-0256-7

Further reading