Spatial multiplexing of soliton microcombs

Abstract

Dual-comb interferometry utilizes two optical frequency combs to map the optical field’s spectrum to a radio-frequency signal without using moving parts, allowing improved speed and accuracy. However, the method is compounded by the complexity and demanding stability associated with operating multiple laser frequency combs. To overcome these challenges, we demonstrate simultaneous generation of multiple frequency combs from a single optical microresonator and a single continuous-wave laser. Similar to space-division multiplexing, we generate several dissipative Kerr soliton states—circulating solitonic pulses driven by a continuous-wave laser—in different spatial (or polarization) modes of a MgF2 microresonator. Up to three distinct combs are produced simultaneously, featuring excellent mutual coherence and substantial repetition rate differences, useful for fast acquisition and efficient rejection of soliton intermodulation products. Dual-comb spectroscopy with amplitude and phase retrieval, as well as optical sampling of a breathing soliton, is realized with the free-running system. Compatibility with photonic-integrated resonators could enable the deployment of dual- and triple-comb-based methods to applications where they remained impractical with current technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Principle of spatial multiplexing of solitons in a single microresonator.
Fig. 2: Dual-comb generation with spatially multiplexed co-propagating solitons.
Fig. 3: Dual-comb generation with spatially multiplexed counter-propagating solitons and proof-of-principle spectroscopy.
Fig. 4: Resolving the breathing dynamics of a soliton.
Fig. 5: Triple comb generation in a single resonator by multiplexing in three mode families.

Data availability

The code and data used to produce the plots within this paper are available at https://doi.org/10.5281/zenodo.1321270. All other data used in this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Hansch, T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    ADS  Article  Google Scholar 

  2. 2.

    Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    ADS  Article  Google Scholar 

  3. 3.

    Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

    Article  Google Scholar 

  4. 4.

    Schliesser, A., Brehm, M., Keilmann, F. & van der Weide, D. W. D. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

    ADS  Article  Google Scholar 

  5. 5.

    Ideguchi, T., Poisson, A., Guelachvili, G., Picqué, N. & Hänsch, T. W. Adaptive real-time dual-comb spectroscopy. Nat. Commun. 5, 3375 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements. Nat. Photon. 3, 351–356 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    Sinclair, L. C. et al. Comparing optical oscillators across the air to milliradians in phase and 10–17 in frequency. Phys. Rev. Lett. 120, 050801 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Ataie, V., Esman, D., Kuo, B. P.-P., Alic, N. & Radic, S. Subnoise detection of a fast random event. Science 350, 1343–1345 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Link, S. M., Maas, D. J. H. C., Waldburger, D. & Keller, U. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science 356, 1164–1168 (2017).

    Article  Google Scholar 

  12. 12.

    Carlson, D. R., Hickstein, D. D., Cole, D. C., Diddams, S. A. & Papp, S. B. Dual-comb interferometry via repetition rate switching of a single frequency comb. Opt. Lett. 43, 3614–3617 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Millot, G. et al. Frequency-agile dual-comb spectroscopy. Nat. Photon. 10, 27–30 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Article  Google Scholar 

  15. 15.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    ADS  Article  Google Scholar 

  17. 17.

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Skryabin, D. V. Soliton self-frequency shift cancellation in photonic crystal fibers. Science 301, 1705–1708 (2003).

    ADS  Article  Google Scholar 

  20. 20.

    Karpov, M. et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett. 116, 103902 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. L. & Kippenberg, T. J. Breathing dissipative solitons in optical microresonators. Nat. Commun. 8, 736 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Preprint at http://arxiv.org/abs/1801.05174 (2018).

  25. 25.

    Obrzud, E. et al. A microphotonic astrocomb. Preprint at http://arxiv.org/abs/1712.09526 (2017).

  26. 26.

    Jost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

    Article  Google Scholar 

  27. 27.

    Brasch, V., Lucas, E., Jost, J. D., Geiselmann, M. & Kippenberg, T. J. Self-referenced photonic chip soliton Kerr frequency comb. Light Sci. Appl. 6, e16202 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Suh, M. G., Yang, Q. F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Pavlov, N. G. et al. Soliton dual frequency combs in crystalline microresonators. Opt. Lett. 42, 514–517 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    Joshi, C. et al. Counter-rotating cavity solitons in a silicon nitride microresonator. Opt. Lett. 43, 547–550 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Yang, Q. F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).

    Article  Google Scholar 

  34. 34.

    Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photon. 7, 354–362 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

    ADS  Article  Google Scholar 

  36. 36.

    Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

    ADS  Article  Google Scholar 

  37. 37.

    Matsko, A. B., Liang, W., Savchenkov, A. A., Eliyahu, D. & Maleki, L. Optical Cherenkov radiation in overmoded microresonators. Opt. Lett. 41, 2907–2910 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators. Optica 3, 1132–1135 (2016).

    Article  Google Scholar 

  39. 39.

    Lucas, E., Guo, H., Jost, J. D., Karpov, M. & Kippenberg, T. J. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A 95, 043822 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Lucas, E., Jost, J. D., Beha, K., Holzwarth, R. & Kippenberg, T. Soliton-based optical Kerr frequency comb for low-noise microwave generation. In 2017 IEEE Int. Frequency Control Symposium 530–533 (IEEE, 2017).

  41. 41.

    Guo, H. et al. Intermode breather solitons in optical microresonators. Phys. Rev. X 7, 041055 (2017).

    Google Scholar 

  42. 42.

    Yang, Q. F., Yi, X., Yang, K. Y. & Vahala, K. Stokes solitons in optical microcavities. Nat. Phys. 13, 53–57 (2017).

    Article  Google Scholar 

  43. 43.

    Bao, C. et al. Orthogonally polarized Kerr frequency combs. Preprint at http://arxiv.org/abs/1705.05045 (2017).

  44. 44.

    Donvalkar, P. et al. Broadband frequency comb generation in the near-visible using higher-order modes in silicon nitride microresonators. In Conference on Lasers and Electro-Optics STu4J.5 (OSA, 2017).

  45. 45.

    Zhao, X. et al. Dual comb generation in a single microresonator. In Conference on Lasers and Electro-Optics STh3L.4 (OSA, 2017).

  46. 46.

    Lomsadze, B., Smith, B. C. & Cundiff, S. T. Tri-comb spectroscopy. Nat. Photon. https://doi.org/10.1038/s41566-018-0267-4 (2018).

  47. 47.

    Cundiff, S. T. & Mukamel, S. Optical multidimensional coherent spectroscopy. Phys. Today 66, 44–49 (2013).

    Article  Google Scholar 

  48. 48.

    Zhao, X., Qu, X., Zhang, F., Zhao, Y. & Tang, G. Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb. Opt. Lett. 43, 807–810 (2018).

    ADS  Article  Google Scholar 

  49. 49.

    Izutsu, M., Shikama, S. & Sueta, T. Integrated optical SSB modulator/frequency shifter. IEEE J. Quantum Electron. 17, 2225–2227 (1981).

    ADS  Article  Google Scholar 

  50. 50.

    Coddington, I., Swann, W. C. & Newbury, N. R. Coherent linear optical sampling at 15 bits of resolution. Opt. Lett. 34, 2153–2155 (2009).

    ADS  Article  Google Scholar 

  51. 51.

    Bao, C. et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett. 117, 163901 (2016).

    ADS  Article  Google Scholar 

  52. 52.

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Imaging soliton dynamics in optical microcavities. Preprint at http://arxiv.org/abs/1805.07629 (2018).

  53. 53.

    Lomsadze, B. & Cundiff, S. T. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science 357, 1389–1391 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  54. 54.

    Esman, D., Ataie, V., Kuo, B. P.-P., Alic, N. & Radic, S. Subnoise signal detection and communication. J. Lightwave Technol. 34, 5214–5219 (2016).

    ADS  Article  Google Scholar 

  55. 55.

    Kim, S. et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun. 8, 372 (2017).

    ADS  Article  Google Scholar 

  56. 56.

    Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article  Google Scholar 

  57. 57.

    Liu, J. et al. Ultralow-power photonic chip-based soliton frequency combs. Preprint at http://arxiv.org/abs/1805.00069 (2018).

  58. 58.

    Lee, S. H. et al. Towards visible soliton microcomb generation. Nat. Commun. 8, 1295 (2017).

    ADS  Article  Google Scholar 

  59. 59.

    Karpov, M., Pfeiffer, M. H. P., Liu, J., Lukashchuk, A. & Kippenberg, T. J. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun. 9, 1146 (2018).

    ADS  Article  Google Scholar 

  60. 60.

    Grudinin, I. S. & Yu, N. Dispersion engineering of crystalline resonators via microstructuring. Optica 2, 221–224 (2015).

    Article  Google Scholar 

  61. 61.

    Humphrey, M. J. Calculation of Coupling Between Tapered Fiber Modes and Whispering-Gallery Modes of a Spherical Microlaser. PhD thesis, Oklahoma State Univ. 59 (2005).

  62. 62.

    Durán, V., Tainta, S. & Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Opt. Express 23, 30557–30569 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank N. Newbury for important suggestions and comments. The authors thank J. D. Jost and W. Weng for their assistance as well as J. Liu, H. Guo, N. J. Engelsen and M. Anderson for their feedback on the manuscript. This publication was supported by funding from the Swiss National Science Foundation under grant agreement 163864, by the Air Force Office of Scientific Research, Air Force Material Command, USAF under award no. FA9550-15-1-0099, and by the Ministry of Education and Science of the Russian Federation under project RFMEFI58516X0005. E.L. acknowledges the support of the European Space Technology Centre with ESA contract no. 4000118777/16/NL/GM.

Author information

Affiliations

Authors

Contributions

E.L. and G.L. designed the experimental set-up. E.L. performed the experiments and analysed the data. G.L. fabricated the device, with assistance from N.G.P. E.L., R.B. and A.S.R. performed the experimental comb linewidth measurement. M.K. and A.S.R. assembled the RF components for the single sideband modulator driving. E.L. wrote the manuscript, with input from the other authors. T.J.K. and M.L.G. supervised the project.

Corresponding authors

Correspondence to E. Lucas or T. J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains supplementary figures and additional information about the work.

Supplementary Video 1

This movie shows the spectrum of an animated breathing soliton.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lucas, E., Lihachev, G., Bouchand, R. et al. Spatial multiplexing of soliton microcombs. Nature Photon 12, 699–705 (2018). https://doi.org/10.1038/s41566-018-0256-7

Download citation

Further reading