Coherent extreme-ultraviolet emission generated through frustrated tunnelling ionization

Abstract

Coherent extreme-ultraviolet emission can be obtained through high-harmonic generation and multiphoton excitation from atoms exposed to a strong laser field. We report the generation of a new kind of coherent extreme-ultraviolet emission from He atoms excited by intense few-cycle laser pulses. An atom can be excited after tunnelling in a strong laser field, in the process known as frustrated tunnelling ionization (FTI). We find that excitation through FTI leads to coherent extreme-ultraviolet emission, and its intensity strongly depends on the ellipticity and carrier-envelope phase of the laser pulses. Additionally, the propagation direction of the emission can be coherently controlled by employing the attosecond lighthouse technique. This coherent control of tunnelling and recombination dynamics, which has provided the fundamental basis of attosecond physics, promises the utilization of FTI emission as a coherent light source and offers new opportunities in ultrafast spectroscopy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Generation mechanism for FTI emission.
Fig. 2: FTI emission obtained for different laser parameters.
Fig. 3: Wavefront rotation of FTI emission using a spatially chirped pulse.
Fig. 4: Coherent control of FTI emission using the attosecond lighthouse method.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Article  Google Scholar 

  2. 2.

    Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  3. 3.

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    Nubbemeyer, T., Gorling, K., Saenz, A., Eichmann, U. & Sandner, W. Strong-field tunneling without ionization. Phys. Rev. Lett. 101, 233001 (2008).

    ADS  Article  Google Scholar 

  5. 5.

    Eichmann, U., Nubbemeyer, T., Rottke, H. & Sandner, W. Acceleration of neutral atoms in strong short-pulse laser fields. Nature 461, 1261–1264 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Liu, H. et al. Low yield of near-zero-momentum electrons and partial atomic stabilization in strong-field tunneling ionization. Phys. Rev. Lett. 109, 093001 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Landsman, A. S. et al. Rydberg state creation by tunnel ionization. New J. Phys. 15, 013001 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Eichmann, U., Saenz, A., Eilzer, S., Nubbemeyer, T. & Sandner, W. Observing Rydberg atoms to survive intense laser fields. Phys. Rev. Lett. 110, 203002 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Xiong, W.-H., Xiao, X.-R., Peng, L.-Y. & Gong, Q. Correspondence of below-threshold high-order-harmonic generation and frustrated tunneling ionization. Phys. Rev. A 94, 013417 (2016).

  10. 10.

    Zimmermann, H., Patchkovskii, S., Ivanov, M. & Eichmann, U. Unified time and frequency picture of ultrafast atomic excitation in strong laser fields. Phys. Rev. Lett. 118, 013003 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Beaulieu, S. et al. Role of excited states in high-order harmonic generation. Phys. Rev. Lett. 117, 203001 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Bengtsson, S. et al. Space–time control of free induction decay in the extreme ultraviolet. Nat. Photon. 11, 252–258 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Beaulieu, S. et al. Phase-resolved two-dimensional spectroscopy of electronic wave packets by laser-induced XUV free induction decay. Phys. Rev. A 95, 041401 (2017).

  14. 14.

    Chini, M. et al. Coherent phase-matched VUV generation by field-controlled bound states. Nat. Photon. 8, 437–441 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Lewenstein, M., Balcou, P., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Article  Google Scholar 

  16. 16.

    Brewer, C. A. et al. Single-shot extreme ultraviolet laser imaging of nanostructures with wavelength resolution. Opt. Lett. 33, 518–520 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    Wagner, C. & Harned, N. EUV lithography: lithography gets extreme. Nat. Photon. 4, 24–26 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    ADS  Article  Google Scholar 

  19. 19.

    Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    Wörner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    Lewenstein, M., Salières, P. & L'Huillier, A. Phase of the atomic polarization in high-order harmonic generation. Phys. Rev. A 52, 4747–4754 (1995).

    ADS  Article  Google Scholar 

  22. 22.

    Chin, S. L. & Xu, H. Tunnel ionization, population trapping, filamentation and applications. J. Phys. B At. Mol. Opt. Phys. 49, 222003 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Salières, P., L’Huillier, A. & Lewenstein, M. Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

    ADS  Article  Google Scholar 

  24. 24.

    Boutu, W. et al. High-order-harmonic generation in gas with a flat-top laser beam. Phys. Rev. A 84, 063406 (2011).

    ADS  Article  Google Scholar 

  25. 25.

    Shchatsinin, I., Ritze, H.-H., Schulz, C. P. & Hertel, I. V. Multiphoton excitation and ionization by elliptically polarized, intense short laser pulses: recognizing multielectron dynamics and doorway states in C60 vs Xe. Phys. Rev. A 79, 053414 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    Kim, K. T. et al. Photonic streaking of attosecond pulse trains. Nat. Photon. 7, 651–656 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    Corsi, C., Pirri, A., Sali, E., Tortora, A. & Bellini, M. Direct interferometric measurement of the atomic dipole phase in high-order harmonic generation. Phys. Rev. Lett. 97, 023901 (2006).

    ADS  Article  Google Scholar 

  28. 28.

    Balogh, E. et al. Dynamic wavefront rotation in the attosecond lighthouse. Optica 4, 48–53 (2017).

    Article  Google Scholar 

  29. 29.

    Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

    ADS  Article  Google Scholar 

  30. 30.

    Kim, K. T. et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nat. Phys. 9, 159–163 (2013).

    Article  Google Scholar 

  31. 31.

    Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).

    ADS  Article  Google Scholar 

  32. 32.

    Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    ADS  Article  Google Scholar 

  33. 33.

    Larsson, J. et al. Two-colour time-resolved spectroscopy of helium using high-order harmonics. J. Phys. B At. Mol. Opt. Phys. 28, L53–L58 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science grant (IBS-R012-D1).

Author information

Affiliations

Authors

Contributions

H.Y., J.H.M. and K.T.K. conceived and designed the experiment. H.Y., J.H.M., S.I.H. and S.B.P. performed the experiment. H.Y., J.H.M., I.A.I. and K.T.K. analysed the experimental data. H.Y., J.H.M., C.H.N. and K.T.K. wrote the manuscript.

Corresponding author

Correspondence to Kyung Taec Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yun, H., Mun, J.H., Hwang, S.I. et al. Coherent extreme-ultraviolet emission generated through frustrated tunnelling ionization. Nature Photon 12, 620–624 (2018). https://doi.org/10.1038/s41566-018-0255-8

Download citation

Further reading