Abstract

Non-reciprocal light propagation is essential to control optical crosstalk and back-scatter in photonic systems. However, realizing high-fidelity non-reciprocity in low-loss integrated photonic circuits remains challenging. Here, we experimentally demonstrate a form of non-local acousto-optic light scattering to produce non-reciprocal single-sideband modulation and mode conversion in an integrated silicon photonic platform. In this system, a travelling-wave acoustic phonon driven by optical forces in a silicon waveguide spatiotemporally modulates light in a separate waveguide through linear interband Brillouin scattering. This process extends narrowband optomechanics-based schemes for non-reciprocity to travelling-wave physics, enabling large operation bandwidths of more than 125 GHz and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating optical waves. The modulator operation wavelength is tunable over a 35-nm range by varying the optical drive wavelength. Such travelling-wave acousto-optic interactions provide a promising path toward the realization of broadband, low-loss isolators and circulators within integrated photonics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All data supporting the findings of this work are available within the article and its supplementary information files.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I. W. & Osgood, R. M.Jr. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 92, 071117 (2008).

  2. 2.

    Tien, M. C., Mizumoto, T., Pintus, P., Kromer, H. & Bowers, J. E. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. Opt. Express 19, 11740–11745 (2011).

  3. 3.

    Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

  4. 4.

    Sobu, Y., Shoji, Y., Sakurai, K. & Mizumoto, T. GaInAsP/InP MZI waveguide optical isolator integrated with spot size converter. Opt. Express 21, 15373–15381 (2013).

  5. 5.

    Huang, D. et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics. IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).

  6. 6.

    Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

  7. 7.

    Gallo, K., Assanto, G., Parameswaran, K. R. & Fejer, M. M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

  8. 8.

    Soljačić, M., Luo, C., Joannopoulos, J. D. & Fan, S. Nonlinear photonic crystal microdevices for optical integration. Opt. Lett. 28, 637–639 (2003).

  9. 9.

    Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

  10. 10.

    Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

  11. 11.

    Ibrahim, S. K., Bhandare, S., Sandel, D., Zhang, H. & Noe, R. Non-magnetic 30 dB integrated optical isolator in III/V material. Electron. Lett. 40, 1293–1294 (2004).

  12. 12.

    Doerr, C. R., Dupuis, N. & Zhang, L. Optical isolator using two tandem phase modulators. Opt. Lett. 36, 4293–4295 (2011).

  13. 13.

    Doerr, C. R., Chen, L. & Vermeulen, D. Silicon photonics broadband modulation-based isolator. Opt. Express 22, 4493–4498 (2014).

  14. 14.

    Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

  15. 15.

    Kang, M. S., Butsch, A. & Russell, P. St. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

  16. 16.

    Huang, X. & Fan, S. Complete all-optical silica fiber isolator via stimulated Brillouin scattering. J. Lightwave Technol. 29, 2267–2275 (2011).

  17. 17.

    Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

  18. 18.

    Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

  19. 19.

    Fang, K., Yu, Z. & Fan, S. Photonic Aharonov-Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

  20. 20.

    Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

  21. 21.

    Dong, C. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 6193 (2015).

  22. 22.

    Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

  23. 23.

    Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

  24. 24.

    Ruesink, F., Miri, M. A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

  25. 25.

    Kim, J., Kim, S. & Bahl, G. Complete linear optical isolation at the microscale with ultralow loss. Sci. Rep. 7, 1647 (2017).

  26. 26.

    Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

  27. 27.

    Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–97 (2018).

  28. 28.

    Shen, Z. et al. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun. 9, 1797 (2018).

  29. 29.

    Ruesink, F., Mathew, J. P., Miri, M. A., Alù, A. & Verhagen, E. Optical circulation in a multimode optomechanical resonator. Nat. Commun. 9, 1798 (2018).

  30. 30.

    Kittlaus, E. A., Otterstrom, N. T. & Rakich, P. T. On-chip inter-modal Brillouin scattering. Nat. Commun. 8, 15819 (2017).

  31. 31.

    Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Science 360, 1113–1116 (2018).

  32. 32.

    Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

  33. 33.

    Tadesse, S. A. & Li, M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun. 5, 5402 (2014).

  34. 34.

    Yariv, A. Quantum Electronics (Wiley, New York, 1989).

  35. 35.

    Kuhn, L., Heidrich, P. F. & Lean, E. G. Optical guided wave mode conversion by an acoustic surface wave. Appl. Phys. Lett. 19, 428 (1971).

  36. 36.

    Sasaki, H., Kushibiki, J. & Chubachi, N. Efficient acoustooptic TE TM mode conversion in ZnO films. Appl. Phys. Lett. 25, 476–477 (1974).

  37. 37.

    Ohmachi, Y. & Noda, J. LiNbO3 TE–TM mode converter using collinear acoustooptic interaction. IEEE J. Quantum Electron. 13, 43–46 (1977).

Download references

Acknowledgements

This work was supported through a seedling grant under the direction of D. Green at DARPA MTO and by the Packard Fellowship for Science and Engineering; N.T.O. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant no. DGE1122492.

Author information

Affiliations

  1. Department of Applied Physics, Yale University, New Haven, CT, USA

    • Eric A. Kittlaus
    • , Nils T. Otterstrom
    • , Prashanta Kharel
    • , Shai Gertler
    •  & Peter T. Rakich

Authors

  1. Search for Eric A. Kittlaus in:

  2. Search for Nils T. Otterstrom in:

  3. Search for Prashanta Kharel in:

  4. Search for Shai Gertler in:

  5. Search for Peter T. Rakich in:

Contributions

E.A.K. designed and fabricated the waveguide devices. E.A.K., P.K., S.G., N.T.O. and P.T.R. developed numerical and analytical models of the device physics. E.A.K., N.T.O. and S.G. conducted experiments with the assistance of P.K. and P.T.R. All authors contributed to the writing of this paper.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Eric A. Kittlaus or Peter T. Rakich.

Supplementary information

  1. Supplementary Information

    This file contains supplementary figures and additional information about the work.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41566-018-0254-9

Further reading