Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-reciprocal interband Brillouin modulation

Abstract

Non-reciprocal light propagation is essential to control optical crosstalk and back-scatter in photonic systems. However, realizing high-fidelity non-reciprocity in low-loss integrated photonic circuits remains challenging. Here, we experimentally demonstrate a form of non-local acousto-optic light scattering to produce non-reciprocal single-sideband modulation and mode conversion in an integrated silicon photonic platform. In this system, a travelling-wave acoustic phonon driven by optical forces in a silicon waveguide spatiotemporally modulates light in a separate waveguide through linear interband Brillouin scattering. This process extends narrowband optomechanics-based schemes for non-reciprocity to travelling-wave physics, enabling large operation bandwidths of more than 125 GHz and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating optical waves. The modulator operation wavelength is tunable over a 35-nm range by varying the optical drive wavelength. Such travelling-wave acousto-optic interactions provide a promising path toward the realization of broadband, low-loss isolators and circulators within integrated photonics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Silicon waveguide interband modulator.
Fig. 2: Phase-matching and operation scheme of the interband Brillouin modulator.
Fig. 3: Experimental characterization of the non-reciprocal modulator.

Similar content being viewed by others

Data availability

All data supporting the findings of this work are available within the article and its supplementary information files.

References

  1. Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I. W. & Osgood, R. M.Jr. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 92, 071117 (2008).

    Article  ADS  Google Scholar 

  2. Tien, M. C., Mizumoto, T., Pintus, P., Kromer, H. & Bowers, J. E. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. Opt. Express 19, 11740–11745 (2011).

    Article  ADS  Google Scholar 

  3. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

    Article  ADS  Google Scholar 

  4. Sobu, Y., Shoji, Y., Sakurai, K. & Mizumoto, T. GaInAsP/InP MZI waveguide optical isolator integrated with spot size converter. Opt. Express 21, 15373–15381 (2013).

    Article  ADS  Google Scholar 

  5. Huang, D. et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics. IEEE J. Sel. Top. Quantum Electron. 22, 271–278 (2016).

    Article  Google Scholar 

  6. Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

    Article  ADS  Google Scholar 

  7. Gallo, K., Assanto, G., Parameswaran, K. R. & Fejer, M. M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

    Article  ADS  Google Scholar 

  8. Soljačić, M., Luo, C., Joannopoulos, J. D. & Fan, S. Nonlinear photonic crystal microdevices for optical integration. Opt. Lett. 28, 637–639 (2003).

    Article  ADS  Google Scholar 

  9. Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    Article  ADS  Google Scholar 

  10. Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    Article  ADS  Google Scholar 

  11. Ibrahim, S. K., Bhandare, S., Sandel, D., Zhang, H. & Noe, R. Non-magnetic 30 dB integrated optical isolator in III/V material. Electron. Lett. 40, 1293–1294 (2004).

    Article  Google Scholar 

  12. Doerr, C. R., Dupuis, N. & Zhang, L. Optical isolator using two tandem phase modulators. Opt. Lett. 36, 4293–4295 (2011).

    Article  ADS  Google Scholar 

  13. Doerr, C. R., Chen, L. & Vermeulen, D. Silicon photonics broadband modulation-based isolator. Opt. Express 22, 4493–4498 (2014).

    Article  ADS  Google Scholar 

  14. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  15. Kang, M. S., Butsch, A. & Russell, P. St. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  16. Huang, X. & Fan, S. Complete all-optical silica fiber isolator via stimulated Brillouin scattering. J. Lightwave Technol. 29, 2267–2275 (2011).

    Article  ADS  Google Scholar 

  17. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article  ADS  Google Scholar 

  18. Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

    Article  ADS  Google Scholar 

  19. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov-Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article  ADS  Google Scholar 

  20. Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    Article  ADS  Google Scholar 

  21. Dong, C. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 6193 (2015).

    Article  Google Scholar 

  22. Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Article  Google Scholar 

  23. Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

    Article  ADS  Google Scholar 

  24. Ruesink, F., Miri, M. A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    Article  ADS  Google Scholar 

  25. Kim, J., Kim, S. & Bahl, G. Complete linear optical isolation at the microscale with ultralow loss. Sci. Rep. 7, 1647 (2017).

    Article  ADS  Google Scholar 

  26. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

  27. Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–97 (2018).

    Article  ADS  Google Scholar 

  28. Shen, Z. et al. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun. 9, 1797 (2018).

    Article  ADS  Google Scholar 

  29. Ruesink, F., Mathew, J. P., Miri, M. A., Alù, A. & Verhagen, E. Optical circulation in a multimode optomechanical resonator. Nat. Commun. 9, 1798 (2018).

    Article  ADS  Google Scholar 

  30. Kittlaus, E. A., Otterstrom, N. T. & Rakich, P. T. On-chip inter-modal Brillouin scattering. Nat. Commun. 8, 15819 (2017).

    Article  ADS  Google Scholar 

  31. Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Science 360, 1113–1116 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  32. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  ADS  Google Scholar 

  33. Tadesse, S. A. & Li, M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun. 5, 5402 (2014).

    Article  ADS  Google Scholar 

  34. Yariv, A. Quantum Electronics (Wiley, New York, 1989).

  35. Kuhn, L., Heidrich, P. F. & Lean, E. G. Optical guided wave mode conversion by an acoustic surface wave. Appl. Phys. Lett. 19, 428 (1971).

    Article  ADS  Google Scholar 

  36. Sasaki, H., Kushibiki, J. & Chubachi, N. Efficient acoustooptic TE TM mode conversion in ZnO films. Appl. Phys. Lett. 25, 476–477 (1974).

    Article  ADS  Google Scholar 

  37. Ohmachi, Y. & Noda, J. LiNbO3 TE–TM mode converter using collinear acoustooptic interaction. IEEE J. Quantum Electron. 13, 43–46 (1977).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported through a seedling grant under the direction of D. Green at DARPA MTO and by the Packard Fellowship for Science and Engineering; N.T.O. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant no. DGE1122492.

Author information

Authors and Affiliations

Authors

Contributions

E.A.K. designed and fabricated the waveguide devices. E.A.K., P.K., S.G., N.T.O. and P.T.R. developed numerical and analytical models of the device physics. E.A.K., N.T.O. and S.G. conducted experiments with the assistance of P.K. and P.T.R. All authors contributed to the writing of this paper.

Corresponding authors

Correspondence to Eric A. Kittlaus or Peter T. Rakich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains supplementary figures and additional information about the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kittlaus, E.A., Otterstrom, N.T., Kharel, P. et al. Non-reciprocal interband Brillouin modulation. Nature Photon 12, 613–619 (2018). https://doi.org/10.1038/s41566-018-0254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0254-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing