Letter | Published:

Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal

Nature Photonicsvolume 12pages596600 (2018) | Download Citation

Abstract

A nonlinear photonic crystal (NPC)1 possesses space-dependent second-order nonlinear coefficients, which can effectively control nonlinear optical interactions through quasi-phase matching2. Lithium niobate (LiNbO3) crystal is one of the most popular materials from which to fabricate NPC structures because of its excellent nonlinear optical properties3,4,5. One- and two-dimensional LiNbO3 NPCs have been widely utilized in laser frequency conversion6,7, spatial light modulation8,9,10,11,12 and nonlinear optical imaging13,14. However, limited by traditional poling methods, the experimental realization of three-dimensional (3D) NPCs remains one of the greatest challenges in the field of nonlinear optics1,15. Here, we present an experimental demonstration of a 3D LiNbO3 NPC by using a femtosecond laser to selectively erase the nonlinear coefficients in a LiNbO3 crystal16,17. The effective conversion efficiency is comparable to that of typical quasi-phase-matching processes. Such a 3D LiNbO3 NPC provides a promising platform for future nonlinear optical studies based on its unique ability to control nonlinear interacting waves in 3D configuration.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Berger, V. Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136–4139 (1998).

  2. 2.

    Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

  3. 3.

    Fejer, M. M., Magel, G. A., Jundt, D. H. & Byer, R. L. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28, 2631–2654 (1992).

  4. 4.

    Yamada, M., Nada, N., Saitoh, M. & Watanabe, K. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435–436 (1993).

  5. 5.

    Broderick, N. G., Ross, G. W., Offerhaus, H. L., Richardson, D. J. & Hanna, D. C. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 4345–4348 (2000).

  6. 6.

    Zhu, S., Zhu, Y. Y. & Ming, N. B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

  7. 7.

    Jin, H. et al. Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal. Phys. Rev. Lett. 111, 023603 (2013).

  8. 8.

    Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nat. Photon. 3, 395–398 (2009).

  9. 9.

    Hong, X. H., Yang, B., Zhang, C., Qin, Y. Q. & Zhu, Y. Y. Nonlinear volume holography for wave-front engineering. Phys. Rev. Lett. 113, 163902 (2014).

  10. 10.

    Bloch, N. V. et al. Twisting light by nonlinear photonic crystals. Phys. Rev. Lett. 108, 233902 (2012).

  11. 11.

    Zhang, Y., Gao, Z. D., Qi, Z., Zhu, S. N. & Ming, N. B. Nonlinear Čerenkov radiation in nonlinear photonic crystal waveguides. Phys. Rev. Lett. 100, 163904 (2008).

  12. 12.

    Trajtenberg-Mills, S., Juwiler, I. & Arie, A. On-axis shaping of second-harmonic beams. Laser Photon. Rev. 9, L40–L44 (2015).

  13. 13.

    Zhang, Y., Wen, J., Zhu, S. N. & Xiao, M. Nonlinear Talbot effect. Phys. Rev. Lett. 104, 183901 (2010).

  14. 14.

    Lu, R. E. et al. Nearly diffraction-free nonlinear imaging of irregularly distributed ferroelectric domains. Phys. Rev. Lett. 120, 067601 (2018).

  15. 15.

    Chen, J. & Chen, X. Phase matching in three-dimensional nonlinear photonic crystals. Phys. Rev. A 80, 013801 (2009).

  16. 16.

    Thomas, J. et al. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser Photon. Rev. 7, L17–L20 (2013).

  17. 17.

    Kroesen, S., Tekce, K., Imbrock, J. & Denz, C. Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ (2) nonlinearity. Appl. Phys. Lett. 107, 101109 (2015).

  18. 18.

    Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y. & Molotskii, M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Appl. Phys. Lett. 82, 103–105 (2003).

  19. 19.

    Yamada, M. & Kishima, K. Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electron. Lett. 27, 828–829 (1991).

  20. 20.

    Wei, D. et al. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal. Appl. Phys. Lett. 110, 261104 (2017).

  21. 21.

    Magel, G. A., Fejer, M. M. & Byer, R. L. Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3. Appl. Phys. Lett. 56, 108–110 (1990).

  22. 22.

    Xu, T. et al. A naturally grown three-dimensional nonlinear photonic crystal. Appl. Phys. Lett. 108, 051907 (2016).

  23. 23.

    Wu, D. et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light Sci. Appl. 4, e228 (2015).

  24. 24.

    Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, e16133 (2016).

  25. 25.

    Ying, C. Y. J. et al. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photon. Rev. 6, 526–548 (2012).

  26. 26.

    Boes, A. et al. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light. Appl. Phys. Lett. 103, 142904 (2013).

  27. 27.

    Chen, X. et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Opt. Lett. 41, 2410–2413 (2016).

  28. 28.

    Sheng, Y. et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express 18, 16539–16545 (2010).

  29. 29.

    Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

  30. 30.

    Xu, T. et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photon. https://doi.org/10.1038/s41566-018-0225-1 (2018).

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0303703, 2016YFA0302500 and 2018YFB1105400), the National Natural Science Foundation of China (NSFC) (91636106, 11621091, 11674171, 11627810, 61475149, 61675190 and 51675503) and Youth Innovation Promotion Association CAS (2017495). The authors acknowledge J. Chu, X. Xu, Q. Wang, X. Hong, Y. Liang, S. Li, L. Zhang, Y. Cai, H. Xu, L. Zhang and X. Zhang for help with sample fabrication and characterization.

Author information

Author notes

  1. These authors contributed equally: Dunzhao Wei, Chaowei Wang, Huijun Wang, Xiaopeng Hu.

Affiliations

  1. National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China

    • Dunzhao Wei
    • , Huijun Wang
    • , Xiaopeng Hu
    • , Dan Wei
    • , Xinyuan Fang
    • , Yong Zhang
    • , Shining Zhu
    •  & Min Xiao
  2. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China

    • Chaowei Wang
    • , Dong Wu
    • , Yanlei Hu
    •  & Jiawen Li
  3. Department of Physics, University of Arkansas, Fayetteville, AR, USA

    • Min Xiao

Authors

  1. Search for Dunzhao Wei in:

  2. Search for Chaowei Wang in:

  3. Search for Huijun Wang in:

  4. Search for Xiaopeng Hu in:

  5. Search for Dan Wei in:

  6. Search for Xinyuan Fang in:

  7. Search for Yong Zhang in:

  8. Search for Dong Wu in:

  9. Search for Yanlei Hu in:

  10. Search for Jiawen Li in:

  11. Search for Shining Zhu in:

  12. Search for Min Xiao in:

Contributions

Y.Z. conceived the idea. D.Z.W., C.W.W., H.J.W., X.P.H., D.W., X.Y.F., Y.L.H. and J.W.L. performed the experiments and numerical simulations under the guidance of Y.Z., D.W., S.N.Z. and M.X. Y.Z. and M.X. supervised the project. All authors contributed to the discussion of experimental results. D.Z.W., Y.Z. and M.X. wrote the manuscript with contributions from all co-authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Dong Wu.

Supplementary information

  1. Supplementary Information

    This file contains additional information about the work, such as sample characterization, fabrication and optimization, and the physical mechanism of laser engineering in a LiNbO3 crystal

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41566-018-0240-2

Further reading