Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal

A Publisher Correction to this article was published on 09 September 2020

This article has been updated

Abstract

A nonlinear photonic crystal (NPC)1 possesses space-dependent second-order nonlinear coefficients, which can effectively control nonlinear optical interactions through quasi-phase matching2. Lithium niobate (LiNbO3) crystal is one of the most popular materials from which to fabricate NPC structures because of its excellent nonlinear optical properties3,4,5. One- and two-dimensional LiNbO3 NPCs have been widely utilized in laser frequency conversion6,7, spatial light modulation8,9,10,11,12 and nonlinear optical imaging13,14. However, limited by traditional poling methods, the experimental realization of three-dimensional (3D) NPCs remains one of the greatest challenges in the field of nonlinear optics1,15. Here, we present an experimental demonstration of a 3D LiNbO3 NPC by using a femtosecond laser to selectively erase the nonlinear coefficients in a LiNbO3 crystal16,17. The effective conversion efficiency is comparable to that of typical quasi-phase-matching processes. Such a 3D LiNbO3 NPC provides a promising platform for future nonlinear optical studies based on its unique ability to control nonlinear interacting waves in 3D configuration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: QPM mechanism in laser-engineered LiNbO3 crystal.
Fig. 2: Sample characterization.
Fig. 3: Demonstration of SHG processes in a 3D LiNbO3 NPC.
Fig. 4: Measured dependences of SH power on input parameters.

Similar content being viewed by others

Change history

  • 09 September 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Berger, V. Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136–4139 (1998).

    Article  ADS  Google Scholar 

  2. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    Article  ADS  Google Scholar 

  3. Fejer, M. M., Magel, G. A., Jundt, D. H. & Byer, R. L. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28, 2631–2654 (1992).

    Article  ADS  Google Scholar 

  4. Yamada, M., Nada, N., Saitoh, M. & Watanabe, K. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435–436 (1993).

    Article  ADS  Google Scholar 

  5. Broderick, N. G., Ross, G. W., Offerhaus, H. L., Richardson, D. J. & Hanna, D. C. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 4345–4348 (2000).

    Article  ADS  Google Scholar 

  6. Zhu, S., Zhu, Y. Y. & Ming, N. B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article  ADS  Google Scholar 

  7. Jin, H. et al. Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal. Phys. Rev. Lett. 111, 023603 (2013).

    Article  ADS  Google Scholar 

  8. Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nat. Photon. 3, 395–398 (2009).

    Article  ADS  Google Scholar 

  9. Hong, X. H., Yang, B., Zhang, C., Qin, Y. Q. & Zhu, Y. Y. Nonlinear volume holography for wave-front engineering. Phys. Rev. Lett. 113, 163902 (2014).

    Article  ADS  Google Scholar 

  10. Bloch, N. V. et al. Twisting light by nonlinear photonic crystals. Phys. Rev. Lett. 108, 233902 (2012).

    Article  ADS  Google Scholar 

  11. Zhang, Y., Gao, Z. D., Qi, Z., Zhu, S. N. & Ming, N. B. Nonlinear Čerenkov radiation in nonlinear photonic crystal waveguides. Phys. Rev. Lett. 100, 163904 (2008).

    Article  ADS  Google Scholar 

  12. Trajtenberg-Mills, S., Juwiler, I. & Arie, A. On-axis shaping of second-harmonic beams. Laser Photon. Rev. 9, L40–L44 (2015).

    Article  ADS  Google Scholar 

  13. Zhang, Y., Wen, J., Zhu, S. N. & Xiao, M. Nonlinear Talbot effect. Phys. Rev. Lett. 104, 183901 (2010).

    Article  ADS  Google Scholar 

  14. Lu, R. E. et al. Nearly diffraction-free nonlinear imaging of irregularly distributed ferroelectric domains. Phys. Rev. Lett. 120, 067601 (2018).

    Article  ADS  Google Scholar 

  15. Chen, J. & Chen, X. Phase matching in three-dimensional nonlinear photonic crystals. Phys. Rev. A 80, 013801 (2009).

    Article  ADS  Google Scholar 

  16. Thomas, J. et al. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser Photon. Rev. 7, L17–L20 (2013).

    Article  Google Scholar 

  17. Kroesen, S., Tekce, K., Imbrock, J. & Denz, C. Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ (2) nonlinearity. Appl. Phys. Lett. 107, 101109 (2015).

    Article  ADS  Google Scholar 

  18. Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y. & Molotskii, M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Appl. Phys. Lett. 82, 103–105 (2003).

    Article  ADS  Google Scholar 

  19. Yamada, M. & Kishima, K. Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electron. Lett. 27, 828–829 (1991).

    Article  ADS  Google Scholar 

  20. Wei, D. et al. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal. Appl. Phys. Lett. 110, 261104 (2017).

    Article  ADS  Google Scholar 

  21. Magel, G. A., Fejer, M. M. & Byer, R. L. Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3. Appl. Phys. Lett. 56, 108–110 (1990).

    Article  ADS  Google Scholar 

  22. Xu, T. et al. A naturally grown three-dimensional nonlinear photonic crystal. Appl. Phys. Lett. 108, 051907 (2016).

    Article  ADS  Google Scholar 

  23. Wu, D. et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light Sci. Appl. 4, e228 (2015).

    Article  Google Scholar 

  24. Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, e16133 (2016).

    Article  Google Scholar 

  25. Ying, C. Y. J. et al. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photon. Rev. 6, 526–548 (2012).

    Article  ADS  Google Scholar 

  26. Boes, A. et al. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light. Appl. Phys. Lett. 103, 142904 (2013).

    Article  ADS  Google Scholar 

  27. Chen, X. et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Opt. Lett. 41, 2410–2413 (2016).

    Article  ADS  Google Scholar 

  28. Sheng, Y. et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express 18, 16539–16545 (2010).

    Article  ADS  Google Scholar 

  29. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article  ADS  Google Scholar 

  30. Xu, T. et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photon. https://doi.org/10.1038/s41566-018-0225-1 (2018).

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0303703, 2016YFA0302500 and 2018YFB1105400), the National Natural Science Foundation of China (NSFC) (91636106, 11621091, 11674171, 11627810, 61475149, 61675190 and 51675503) and Youth Innovation Promotion Association CAS (2017495). The authors acknowledge J. Chu, X. Xu, Q. Wang, X. Hong, Y. Liang, S. Li, L. Zhang, Y. Cai, H. Xu, L. Zhang and X. Zhang for help with sample fabrication and characterization.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. conceived the idea. D.Z.W., C.W.W., H.J.W., X.P.H., D.W., X.Y.F., Y.L.H. and J.W.L. performed the experiments and numerical simulations under the guidance of Y.Z., D.W., S.N.Z. and M.X. Y.Z. and M.X. supervised the project. All authors contributed to the discussion of experimental results. D.Z.W., Y.Z. and M.X. wrote the manuscript with contributions from all co-authors.

Corresponding authors

Correspondence to Yong Zhang, Dong Wu, Shining Zhu or Min Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains additional information about the work, such as sample characterization, fabrication and optimization, and the physical mechanism of laser engineering in a LiNbO3 crystal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Wang, C., Wang, H. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photon 12, 596–600 (2018). https://doi.org/10.1038/s41566-018-0240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0240-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing