Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature

Abstract

Infrared photodetectors are currently subject to a rapidly expanding application space, with an increasing demand for compact, sensitive and inexpensive detectors. Despite continued advancement, technological factors limit the widespread usage of such detectors, specifically, the need for cooling and the high costs associated with processing of iiiv/iivi semiconductors. Here, black phosphorous (bP)/MoS2 heterojunction photodiodes are explored as mid-wave infrared (MWIR) detectors. Although previous studies have demonstrated photodiodes using bP, here we significantly improve the performance, showing that such devices can be competitive with conventional MWIR photodetectors. By optimizing the device structure and light management, we demonstrate a two-terminal device that achieves room-temperature external quantum efficiencies (ηe) of 35% and specific detectivities (D*) as high as 1.1 × 1010 cm Hz1/2 W−1 in the MWIR region. Furthermore, by leveraging the anisotropic optical properties of bP we demonstrate the first bias-selectable polarization-resolved photodetector that operates without the need for external optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: bP/MoS2 heterojunction photodiode concept.
Fig. 2: Infrared optical constants of bP.
Fig. 3: Photoresponse and detectivity.
Fig. 4: Frequency response and noise.
Fig. 5: Polarization-resolved bP/MoS2 heterojunction photodiode.

Similar content being viewed by others

References

  1. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    Article  ADS  Google Scholar 

  2. Jakšić, Z. Micro and Nanophotonics for Semiconductor Infrared Detectors (Springer, Basel, 2014).

    Google Scholar 

  3. Rogalski, A., Adamiec, K. & Rutkowski, J. Narrow-Gap Semiconductor Photodiodes (SPIE, Bellingham, WA, 2000).

  4. Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photon. 7, 888–891 (2013).

    Article  ADS  Google Scholar 

  5. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 5458 (2014).

    Article  Google Scholar 

  6. Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).

    Article  ADS  Google Scholar 

  7. Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotech. 10, 707–713 (2015).

    Article  ADS  Google Scholar 

  8. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 5475 (2014).

    Article  Google Scholar 

  9. Hong, T. et al. Anisotropic photocurrent response at black phosphorus–MoS2 p–n heterojunctions. Nanoscale 7, 18537–18541 (2015).

    Article  ADS  Google Scholar 

  10. Deng, Y. et al. Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014).

    Article  Google Scholar 

  11. Ye, L., Li, H., Chen, Z. & Xu, J. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photon. 3, 692–699 (2016).

    Article  Google Scholar 

  12. Chen, P. et al. Gate tunable WSe2–BP van der Waals heterojunction devices. Nanoscale 8, 3254–3258 (2016).

    Article  ADS  Google Scholar 

  13. Shim, J. et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 7, 13413 (2016).

    Article  ADS  Google Scholar 

  14. Huang, M. et al. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 28, 3481–3485 (2016).

    Article  ADS  Google Scholar 

  15. Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9, 247–252 (2015).

    Article  ADS  Google Scholar 

  16. Guo, Q. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648–4655 (2016).

    Article  ADS  Google Scholar 

  17. Mao, N. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138, 300–305 (2016).

    Article  Google Scholar 

  18. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  Google Scholar 

  19. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  ADS  Google Scholar 

  20. Li, D. et al. Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep. 5, 15899 (2015).

    Article  ADS  Google Scholar 

  21. Macleod, A. Thin-Film Optical Filters (CRC, Boca Raton, FL, 2010).

  22. Villegas, C. E. P., Rocha, A. R. & Marini, A. Anomalous temperature dependence of the band gap in black phosphorus. Nano Lett. 16, 5095–5101 (2016).

    Article  ADS  Google Scholar 

  23. Villegas, C. E. P., Rodin, A. S., Carvalho, A. & Rocha, A. R. Two-dimensional exciton properties in monolayer semiconducting phosphorus allotropes. Phys. Chem. Chem. Phys. 18, 27829–27836 (2016).

    Article  Google Scholar 

  24. Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotech. 11, 593–597 (2016).

    Article  ADS  Google Scholar 

  25. Martyniuk, P., Kopytko, M. & Rogalski, A. Barrier infrared detectors. Opto-Electron. Rev. 22, 127–146 (2014).

    ADS  Google Scholar 

  26. Dhar, N. K., Dat, R. & Sood, A. K. in Optoelectronics—Advanced Materials and Devices Ch. 7 (InTech, London, 2013).

  27. Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black phosphorous–arsenic alloys. ACS Nano 11, 11724–11731 (2017).

    Article  Google Scholar 

  28. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    Article  ADS  Google Scholar 

  29. Martyniuk, P. & Rogalski, A. HOT infrared photodetectors. Opto-Electron. Rev. 21, 239–257 (2013).

    Article  ADS  Google Scholar 

  30. Yau, L. D. & Sah, C.-T. Theory and experiments of low-frequency generation–recombination noise in MOS transistors. IEEE Trans. Electron. Devices 16, 170–177 (1969).

    Article  ADS  Google Scholar 

  31. Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017).

    Article  ADS  Google Scholar 

  32. Haddadi, A., Dehzangi, A., Chevallier, R., Adhikary, S. & Razeghi, M. Bias–selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs1−xSbx/AlAs1−xSbx type-II superlattices. Sci. Rep. 7, 3379 (2017).

    Article  ADS  Google Scholar 

  33. Bullock, J., Cuevas, A., Allen, T. & Battaglia, C. Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl. Phys. Lett. 105, 232109 (2014).

    Article  ADS  Google Scholar 

  34. Chuang, S. et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014).

    Article  ADS  Google Scholar 

  35. Low, T. et al. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90, 075434 (2014).

    Article  ADS  Google Scholar 

  36. Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

    Article  ADS  Google Scholar 

  37. Huang, Y. et al. An innovative way of etching MoS2 characterization and mechanistic investigation. Nano Res. 6, 200–207 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Wijewarnasuriya and E. DeCuir from the US Army Research Laboratory for discussions. This work was supported by the Defence Advanced Research Projects Agency under contract no. HR0011-16-1-0004. K.B.C. acknowledges funding from the Australian Research Council (DP150103736 and FT140100577) and an Innovation Fellowship from the Victorian Endowment for Science, Knowledge and Innovation (VESKI).

Author information

Authors and Affiliations

Authors

Contributions

J.B., M.A. and A.J. conceived the idea for the project and designed the experiments. J.B. and M.A. performed optical measurements. M.A., J.B., J.C. and G.H.A. fabricated devices. V.A. performed device simulations. Y.-Z.C. and Y.-L.C. performed TEM measurements. J.B, M.A., V.A., V.R.S., Y.G., K.B.C. and A.J. analysed the data. J.B., M.A. and A.J. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ali Javey.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figures and additional information about the work such as photodiode fabrication and performance and laser diode characterization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bullock, J., Amani, M., Cho, J. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nature Photon 12, 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0239-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing