Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silicon–plasmonic integrated circuits for terahertz signal generation and coherent detection

An Author Correction to this article was published on 11 June 2019

This article has been updated

Abstract

Optoelectronic signal processing offers great potential for generation and detection of ultra-broadband waveforms in the terahertz range (so-called T-waves). However, fabrication of the underlying devices still relies on complex processes using dedicated III–V semiconductor substrates. This severely restricts the application potential of current T-wave transmitters and receivers and impedes co-integration of these devices with advanced photonic signal processing circuits. Here, we demonstrate that these limitations can be overcome by plasmonic internal-photoemission detectors (PIPEDs). PIPEDs can be realized on the silicon photonic platform, which allows exploiting the enormous opportunities of the associated device portfolio. In our experiments, we demonstrate both T-wave signal generation and coherent detection at frequencies up to 1 THz. To prove the viability of our concept, we monolithically integrate PIPED transmitters and receivers on a common silicon chip and use them to measure the complex transfer impedance of an integrated T-wave device.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vision of an integrated silicon–plasmonic T-wave wireless transceiver that exploits optoelectronic signal processing both at the transmitter and at the receiver.
Fig. 2: Operating principle of PIPED-based T-wave transmitters and coherent receivers.
Fig. 3: Demonstration of PIPED performance for O/T and T/E conversion.
Fig. 4: Demonstration of T-wave system on a silicon chip.

Similar content being viewed by others

Change history

  • 11 June 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 10, 371–379 (2016).

    Article  ADS  Google Scholar 

  2. Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).

    Article  ADS  Google Scholar 

  3. Ma, J., Karl, N. J., Bretin, S., Ducournau, G. & Mittleman, D. M. Frequency-division multiplexer and demultiplexer for terahertz wireless links. Nat. Commun. 8, 729 (2017).

    Article  ADS  Google Scholar 

  4. Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

    Article  ADS  Google Scholar 

  5. Krügener, K. et al. Terahertz meets sculptural and architectural art: evaluation and conservation of stone objects with T-ray technology. Sci. Rep. 5, 14842 (2015).

    Article  ADS  Google Scholar 

  6. Shalit, A., Ahmed, S., Savolainen, J. & Hamm, P. Terahertz echoes reveal the inhomogeneity of aqueous salt solutions. Nat. Chem. 9, 273–278 (2016).

    Article  Google Scholar 

  7. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  8. Fan, S., He, Y., Ung, B. S. & Pickwell-MacPherson, E. The growth of biomedical terahertz research. J. Phys. D 47, 374009 (2014).

    Article  Google Scholar 

  9. Stantchev, R. I. et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv. 2, e1600190 (2016).

    Article  ADS  Google Scholar 

  10. Naftaly, M., Clarke, R. G., Humphreys, D. A. & Ridler, N. M. Metrology state-of-the-art and challenges in broadband phase-sensitive terahertz measurements. Proc. IEEE 105, 1151–1165 (2017).

    Article  Google Scholar 

  11. Brown, E. R., McIntosh, K. A., Nichols, K. B. & Dennis, C. L. Photomixing up to 3.8 THz in low‐temperature‐grown GaAs. Appl. Phys. Lett. 66, 285–287 (1995).

    Article  ADS  Google Scholar 

  12. Preu, S., Döhler, G. H., Malzer, S., Wang, L. J. & Gossard, A. C. Tunable, continuous-wave terahertz photomixer sources and applications. J. Appl. Phys. 109, 061301 (2011).

    Article  ADS  Google Scholar 

  13. Göbel, T. et al. Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth. Opt. Lett. 38, 4197–4199 (2013).

    Article  ADS  Google Scholar 

  14. Sartorius, B., Stanze, D., Göbel, T., Schmidt, D., & Schell, M. Continuous wave terahertz systems based on 1.5 μm telecom technologies. J. Infrared Millim. Terahertz Waves 33, 405–417 (2011).

    Article  Google Scholar 

  15. Yu, X. et al. 160 Gbit/s photonics wireless transmission in the 300–500 GHz band. APL Photon. 1, 081301 (2016).

    Article  ADS  Google Scholar 

  16. Puerta, R. et al. Single-carrier dual-polarization 328-Gb/s wireless transmission in a D-band millimeter wave 2×2 MU-MIMO radio-over-fiber system. J. Lightwave Technol. 36, 587–593 (2018).

    Article  ADS  Google Scholar 

  17. Hsieh, Y.-D. et al. Terahertz frequency-domain spectroscopy of low-pressure acetonitrile gas by a photomixing terahertz synthesizer referenced to dual optical frequency combs. J. Infrared Millim. Terahertz Waves 37, 903–915 (2016).

    Article  Google Scholar 

  18. Hisatake, S., Koda, Y., Nakamura, R., Hamada, N. & Nagatsuma, T. Terahertz balanced self-heterodyne spectrometer with SNR-limited phase-measurement sensitivity. Opt. Express 23, 26689–26695 (2015).

    Article  ADS  Google Scholar 

  19. Harter, T. et al. Wireless multi-subcarrier THz communications using mixing in a photoconductor for coherent reception. In 2017 IEEE Photonics Conference (IPC) 147–148 (IEEE, 2017).

  20. Ishibashi, T., Muramoto, Y., Yoshimatsu, T. & Ito, H. Unitraveling-carrier photodiodes for terahertz applications. IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).

    Article  ADS  Google Scholar 

  21. Song, H.-J. et al. Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW. IEEE Microw. Wireless Compon. Lett. 22, 363–365 (2012).

    Article  Google Scholar 

  22. Beling, A., Xie, X. & Campbell, J. C. High-power, high-linearity photodiodes. Optica 3, 328–338 (2016).

    Article  Google Scholar 

  23. Berry, C. W. et al. High power terahertz generation using 1550 nm plasmonic photomixers. Appl. Phys. Lett. 105, 011121 (2014).

    Article  ADS  Google Scholar 

  24. Olvera, A. D. J. F., Lu, H., Gossard, A. C. & Preu, S. Continuous-wave 1550 nm operated terahertz system using ErAs:In(Al)GaAs photo-conductors with 52 dB dynamic range at 1 THz. Opt. Express 25, 29492–29500 (2017).

    Article  ADS  Google Scholar 

  25. Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    Article  ADS  Google Scholar 

  26. Vivien, L. & Pavesi, L. (eds) Handbook of Silicon Photonics (CRC Press, Boca Raton, FL, 2013).

  27. Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401–412 (2005).

    Article  ADS  Google Scholar 

  28. Muehlbrandt, S. et al. Silicon–plasmonic internal-photoemission detector for 40 Gbit/s data reception. Optica 3, 741–747 (2016).

    Article  Google Scholar 

  29. Harter, T. et al. Silicon-plasmonic photomixer for generation and homodyne reception of continuous-wave THz radiation. In Conference on Lasers and Electro-Optics SM4E.5 (OSA, 2016).

  30. Pfeifle, J., Alloatti, L., Freude, W., Leuthold, J. & Koos, C. Silicon–organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Opt. Express 20, 15359–15376 (2012).

    Article  ADS  Google Scholar 

  31. Harris, N. C. et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22, 10487–10493 (2014).

    Article  ADS  Google Scholar 

  32. Kim, J.-Y. et al. Compact and stable THz vector spectroscopy using silicon photonics technology. Opt. Express 22, 7178–7185 (2014).

    Article  ADS  Google Scholar 

  33. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

    Article  ADS  Google Scholar 

  34. Koos, C. et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J. Lightwave Technol. 34, 256–268 (2016).

    Article  ADS  Google Scholar 

  35. Hiraki, T. et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photon. 11, 482–485 (2017).

    Article  Google Scholar 

  36. Timurdogan, E. et al. An ultralow power athermal silicon modulator. Nat. Commun. 5, 4008 (2014).

    Article  Google Scholar 

  37. Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

    Article  Google Scholar 

  38. Quay, R. et al. High-power microwaveGaN/AlGaN HEMTs and MMICs on SiC and silicon substrates for modern radio communication. Phys. Status Solidi 215, 1700655 (2018).

    Article  ADS  Google Scholar 

  39. Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    Article  Google Scholar 

  40. Canali, C., Majni, G., Minder, R. & Ottaviani, G. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans. Electron. Devices 22, 1045–1047 (1975).

    Article  ADS  Google Scholar 

  41. Bowers, J. & Burrus, C. Ultrawide-band long-wavelength p–i–n photodetectors. J. Lightwave Technol. 5, 1339–1350 (1987).

    Article  ADS  Google Scholar 

  42. Renaud, C. C. et al. Antenna integrated THz uni-traveling carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 24, 8500111 (2018).

    Article  Google Scholar 

  43. Latzel, P. et al. Generation of mW Level in the 300-GHz band using resonant-cavity-enhanced unitraveling carrier photodiodes. IEEE Trans. Terahertz Sci. Technol. 7, 800–807 (2017).

    Article  ADS  Google Scholar 

  44. Rouvalis, E., Fice, M. J., Renaud, C. C. & Seeds, A. J. Millimeter-wave optoelectronic mixers based on uni-traveling carrier photodiodes. IEEE Trans. Microw. Theory Tech. 60, 686–691 (2012).

    Article  ADS  Google Scholar 

  45. Hisatake, S., Kim, J.-Y., Ajito, K. & Nagatsuma, T. Self-heterodyne spectrometer using uni-traveling-carrier photodiodes for terahertz-wave generators and optoelectronic mixers. J. Lightwave Technol. 32, 3683–3689 (2014).

    Article  ADS  Google Scholar 

  46. Berry, C. W., Wang, N., Hashemi, M. R., Unlu, M. & Jarrahi, M. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun. 4, 1622 (2013).

    Article  ADS  Google Scholar 

  47. Dietz, R. J. B. et al. Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90 dB dynamic range. Opt. Express 22, 19411–19422 (2014).

    Article  ADS  Google Scholar 

  48. van Dijk, F. et al. Integrated InP heterodyne millimeter wave transmitter. IEEE Photon. Technol. Lett. 26, 965–968 (2014).

    Article  ADS  Google Scholar 

  49. Ponnampalam, L. et al. Monolithically integrated photonic heterodyne system. J. Lightwave Technol. 29, 2229–2234 (2011).

    Article  ADS  Google Scholar 

  50. Vallaitis, T. et al. Optical properties of highly nonlinear silicon–organic hybrid (SOH) waveguide geometries. Opt. Express 17, 17357–17368 (2009).

    Article  ADS  Google Scholar 

  51. Roggenbuck, A. et al. Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples. New J. Phys. 12, 043017 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC Starting Grant ‘EnTeraPIC’, no. 280145; ERC Consolidator Grant ‘TeraSHAPE’, no. 773248), by the Alfried Krupp von Bohlen und Halbach Foundation, by the Helmholtz International Research School of Teratronics (HIRST), by the Karlsruhe School of Optics and Photonics (KSOP) and by the Karlsruhe Nano Micro Facility (KNMF).

Author information

Authors and Affiliations

Authors

Contributions

T.H., S.M., W.F. and C.K. developed the idea. T.H., S.M., S.U. and L.H. contributed to the fabrication of the devices. T.H., S.M., W.F. and C.K. developed the mathematical formulation. T.H., S.M. and A.S. conducted the measurements. T.H. and S.N. performed experiments to calibrate the reference Tx and Rx. T.H. performed electromagnetic simulations. W.F. and C.K. supervised the project. T.H., W.F. and C.K. wrote the paper. All authors revised the paper.

Corresponding authors

Correspondence to T. Harter or C. Koos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harter, T., Muehlbrandt, S., Ummethala, S. et al. Silicon–plasmonic integrated circuits for terahertz signal generation and coherent detection. Nature Photon 12, 625–633 (2018). https://doi.org/10.1038/s41566-018-0237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0237-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing