Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate

Abstract

The performance of many optical devices based on frequency conversion critically depends on spatial modulation of the nonlinear optical response of materials. This modulation ensures efficient energy exchange between optical waves at different frequencies via quasi-phase matching1. In general, quasi-phase-matching structures, also known as nonlinear photonic crystals2,3,4, offer a variety of properties and functionalities that cannot be obtained in uniform nonlinear crystals5,6,7,8,9. So far, nonlinear photonic crystals have been restricted to one- or two-dimensional geometries owing to a lack of fabrication technologies capable of three-dimensional (3D) nonlinearity engineering. Here, we provide an experimental example of a 3D nonlinear photonic crystal, fabricated in ferroelectric barium calcium titanate, by applying an ultrafast light domain inversion approach. The resulting full flexibility of 3D nonlinearity modulation enables phase matching of nonlinear processes along an arbitrary direction, thereby removing constraints imposed by low-dimensional structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NPCs and their corresponding reciprocal lattice vectors.
Fig. 2: Ferroelectric domain inversion with ultrafast light in the BCT crystal.
Fig. 3: SHG in an all optically fabricated 3D NPC.

Similar content being viewed by others

References

  1. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    Article  ADS  Google Scholar 

  2. Berger, V. Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136–4139 (1998).

    Article  ADS  Google Scholar 

  3. Broderick, N. G. R., Ross, G. W., Offerhaus, H. L., Richardson, D. J. & Hanna, D. C. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 4345–4348 (2000).

    Article  ADS  Google Scholar 

  4. Arie, A. & Voloch, N. Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals. Laser Photon. Rev. 4, 355–373 (2010).

    Article  ADS  Google Scholar 

  5. Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nat. Photon. 3, 395–398 (2009).

    Article  ADS  Google Scholar 

  6. Canalias, C. & Pasiskevicius, V. Mirrorless optical parametric oscillator. Nat. Photon. 1, 459–462 (2007).

    Article  ADS  Google Scholar 

  7. Zhang, Y., Wen, J., Zhu, S. N. & Xiao, M. Nonlinear Talbot effect. Phys. Rev. Lett. 104, 183901 (2010).

    Article  ADS  Google Scholar 

  8. Greve, K. et al. Quantum-dot spin-photon entanglement via frequency down-conversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  ADS  Google Scholar 

  9. Leng, H. Y. et al. On-chip steering of entangled photons in nonlinear photonic crystals. Nat. Commun. 2, 429 (2011).

    Article  Google Scholar 

  10. Zhu, S. N., Zhu, Y. Y. & Ming, N. B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article  ADS  Google Scholar 

  11. Chen, J. J. & Chen, X. F. Phase matching in three-dimensional nonlinear photonic crystals. Phys. Rev. A 80, 013801 (2009).

    Article  ADS  Google Scholar 

  12. Pogosian, T. & Lai, N. D. Theoretical investigation of three-dimensional quasi-phase-matching photonic structures. Phys. Rev. A 94, 063821 (2016).

    Article  ADS  Google Scholar 

  13. Bahabad, A. & Arie, A. Generation of optical vortex beams by nonlinear wave mixing. Opt. Express 15, 17619–17624 (2007).

    Article  ADS  Google Scholar 

  14. Guo, R. et al. Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990 (2013).

    Article  Google Scholar 

  15. Shur, V. Ya et al. Domain kinetics in the formation of a periodic domain structure in lithium niobate. Phys. Solid State 41, 1681–1687 (1999).

    Article  ADS  Google Scholar 

  16. Ying, C. Y. J. et al. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photon. Rev. 6, 526–548 (2012).

    Article  ADS  Google Scholar 

  17. Steigerwald, H. et al. Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser. Appl. Phys. Lett. 98, 062902 (2011).

    Article  ADS  Google Scholar 

  18. Boes, A. et al. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light. Appl. Phys. Lett. 103, 142904 (2013).

    Article  ADS  Google Scholar 

  19. Segal, N., Keren-Zur, S., Hendler, N. & Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photon. 9, 180–184 (2015).

    Article  ADS  Google Scholar 

  20. Li, G. X., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article  ADS  Google Scholar 

  21. Chen, X. et al. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett. 107, 141102 (2015).

    Article  ADS  Google Scholar 

  22. Chen, X. et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Opt. Lett. 41, 2410–2413 (2016).

    Article  ADS  Google Scholar 

  23. Chen, X. et al. Ferroelectric domain patterning with ultrafast light. Opt. Photon. News 27, 50 (2016).

    Article  Google Scholar 

  24. Saltiel, S. M. et al. Generation of second-harmonic conical waves in nonlinear Bragg diffraction. Phys. Rev. Lett. 100, 103902 (2008).

    Article  ADS  Google Scholar 

  25. Saltiel, S. M. et al. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures. IEEE J. Quantum Electron. 45, 1465–1472 (2009).

    Article  ADS  Google Scholar 

  26. Wei, D. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photon. https://doi.org/10.1038/s41566-018-0240-2 (2018).

  27. Karpinski, P., Shvedov, V., Krolikowski, W. & Hnatovsky, C. Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithum niobate. Opt. Express 24, 7456–7476 (2016).

    Article  ADS  Google Scholar 

  28. Sheng, Y. et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express 18, 16539–16545 (2010).

    Article  ADS  Google Scholar 

  29. Kim, S. & Gopalan, V. Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate. Mater. Sci. Eng. B 120, 91–94 (2005).

    Article  Google Scholar 

  30. Müller, M. et al. Investigation of periodically poled lithium niobate crystals by light diffraction. J. Appl. Phys. 97, 044102 (2005).

    Article  ADS  Google Scholar 

  31. Xu, T. X. et al. A naturally grown three-dimensional nonlinear photonic crystal. Appl. Phys. Lett. 108, 051907 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council and Qatar National Research Fund (grant no. NPRP 8-246-1-060). T.X. acknowledges financial support from the China Scholarship Council in 2016 (no. 201606220151). We acknowledge support from the ANU Centre for Advanced Microscopy.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and W.K. conceived and coordinated the research project. All authors made significant contributions to the experiments, analysis of the data and writing of the manuscript.

Corresponding authors

Correspondence to Yan Sheng or Wieslaw Krolikowski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional information on ferroelectric barium calcium titanate and the quasi-phase-matched second-harmonic generation process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Switkowski, K., Chen, X. et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photon 12, 591–595 (2018). https://doi.org/10.1038/s41566-018-0225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0225-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing