Nano-optic endoscope for high-resolution optical coherence tomography in vivo

Abstract

Acquisition of high-resolution images from within internal organs using endoscopic optical imaging has numerous clinical applications. However, difficulties associated with optical aberrations and the trade-off between transverse resolution and depth of focus significantly limit the scope of applications. Here, we integrate a metalens, with the ability to modify the phase of incident light at subwavelength level, into the design of an endoscopic optical coherence tomography catheter (termed nano-optic endoscope) to achieve near diffraction-limited imaging through negating non-chromatic aberrations. Remarkably, the tailored chromatic dispersion of the metalens in the context of spectral interferometry is utilized to maintain high-resolution imaging beyond the input field Rayleigh range, easing the trade-off between transverse resolution and depth of focus. We demonstrate endoscopic imaging in resected human lung specimens and in sheep airways in vivo. The combination of the superior resolution and higher imaging depth of focus of the nano-optic endoscope is likely to increase the clinical utility of endoscopic optical imaging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Endoscopic OCT catheter designs.
Fig. 2: Nano-optic endoscope design and fabrication.
Fig. 3: Optical characterization of the nano-optic endoscope and conventional OCT catheters.
Fig. 4: Resolution measurements of the nano-optic endoscope.
Fig. 5: Comparison of OCT images acquired using the nano-optic endoscope and a conventional OCT catheter.
Fig. 6: In vivo and ex vivo endoscopic OCT using the nano-optic endoscope.

References

  1. 1.

    Tearney, G. J. et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography: erratum. Opt. Lett. 21, 912 (1996).

    ADS  Article  Google Scholar 

  2. 2.

    Tearney, G. J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).

    Article  Google Scholar 

  3. 3.

    Fujimoto, J. G. et al. High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart 82, 128–133 (1999).

    Article  Google Scholar 

  4. 4.

    Yabushita, H. et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 106, 1640–1645 (2002).

    Article  Google Scholar 

  5. 5.

    Kume, T. et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am. J. Cardiol. 97, 1713–1717 (2006).

    Article  Google Scholar 

  6. 6.

    Rollins, A. M. et al. Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design. Opt. Lett. 24, 1358–1360 (1999).

    ADS  Article  Google Scholar 

  7. 7.

    Li, X. D. et al. Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus. Endoscopy 32, 921–930 (2000).

    Article  Google Scholar 

  8. 8.

    Sergeev, A. et al. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Opt. Express 1, 432–440 (1997).

    ADS  Article  Google Scholar 

  9. 9.

    Lam, S. et al. In vivo optical coherence tomography imaging of preinvasive bronchial lesions. Clin. Cancer Res. 14, 2006–2011 (2008).

    Article  Google Scholar 

  10. 10.

    Youngquist, R. C., Carr, S. & Davies, D. E. Optical coherence-domain reflectometry: a new optical evaluation technique. Opt. Lett. 12, 158–160 (1987).

    ADS  Article  Google Scholar 

  11. 11.

    Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    ADS  Article  Google Scholar 

  12. 12.

    Fujimoto, J. G. et al. Femtosecond optical ranging in biological systems. Opt. Lett. 11, 150–152 (1986).

    ADS  Article  Google Scholar 

  13. 13.

    Fercher, A. F., Mengedoht, K. & Werner, W. Eye-length measurement by interferometry with partially coherent light. Opt. Lett. 13, 186–188 (1988).

    ADS  Article  Google Scholar 

  14. 14.

    Choma, M., Sarunic, M., Yang, C. & Izatt, J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003).

    ADS  Article  Google Scholar 

  15. 15.

    de Boer, J. F. et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003).

    ADS  Article  Google Scholar 

  16. 16.

    Leitgeb, R., Hitzenberger, C. & Fercher, A. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003).

    ADS  Article  Google Scholar 

  17. 17.

    Wojtkowski, M., Bajraszewski, T., Targowski, P. & Kowalczyk, A. Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt. Lett. 28, 1745–1747 (2003).

    ADS  Article  Google Scholar 

  18. 18.

    Yun, S., Tearney, G., de Boer, J., Iftimia, N. & Bouma, B. High-speed optical frequency-domain imaging. Opt. Express 11, 2953–2963 (2003).

    ADS  Article  Google Scholar 

  19. 19.

    Liu, L. et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat. Med. 17, 1010–1014 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Spoler, F. et al. Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt. Express 15, 10832–10841 (2007).

    ADS  Article  Google Scholar 

  21. 21.

    Cimalla, P., Walther, J., Mehner, M., Cuevas, M. & Koch, E. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging. Opt. Express 17, 19486–19500 (2009).

    ADS  Article  Google Scholar 

  22. 22.

    Shu, X., Beckmann, L. & Zhang, H. Visible-light optical coherence tomography: a review. J. Biomed. Opt. 22, 121707 (2017).

    ADS  Google Scholar 

  23. 23.

    Kim, J. et al. Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter. Opt. Lett. 42, 379–382 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Xi, J. et al. Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging. Opt. Lett. 39, 2016–2019 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Cui, D. et al. Flexible, high-resolution micro-optical coherence tomography endobronchial probe toward in vivo imaging of cilia. Opt. Lett. 42, 867–870 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Drexler, W. et al. In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999).

    ADS  Article  Google Scholar 

  27. 27.

    Standish, B. A. et al. In vivo endoscopic multi-beam optical coherence tomography. Phys. Med. Biol. 55, 615–622 (2010).

    Article  Google Scholar 

  28. 28.

    Singh, K., Yamada, D. & Tearney, G. Astigmatism corrected common path probe for optical coherence tomography. Lasers Surg. Med. 49, 312–318 (2017).

    Article  Google Scholar 

  29. 29.

    Fang, Q. et al. Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics. Biomed. Opt. Express 8, 5127–5138 (2017).

    Article  Google Scholar 

  30. 30.

    Shishkov, M., Bouma, B. E. & Tearney, G. J. System and method for optical coherence imaging. US patent 20060067620A1 (2006).

  31. 31.

    Ohmi, S. et al. Gradient-index rod lens made by a double ion-exchange process. Appl. Opt. 27, 496–499 (1988).

    ADS  Article  Google Scholar 

  32. 32.

    Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Article  Google Scholar 

  33. 33.

    Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    ADS  Article  Google Scholar 

  34. 34.

    Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    Ralston, T. S., Marks, D. L., Carney, P. S. & Boppart, S. A. Interferometric synthetic aperture microscopy. Nat. Phys. 3, 129–134 (2007).

    Article  Google Scholar 

  38. 38.

    Khorasaninejad, M. & Crozier, K. B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat. Commun. 5, 5386 (2014).

    ADS  Article  Google Scholar 

  39. 39.

    Khorasaninejad, M. & Capasso, F. Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters. Nano Lett. 15, 6709–6715 (2015).

    ADS  Article  Google Scholar 

  40. 40.

    Fercher, A. F., Hitzenberger, C. K., Kamp, G. & El-Zaiat, S. Y. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995).

    ADS  Article  Google Scholar 

  41. 41.

    Ha Usler, G. & Lindner, M. W. “Coherence radar” and “spectral radar”-new tools for dermatological diagnosis. J. Biomed. Opt. 3, 21–31 (1998).

    ADS  Article  Google Scholar 

  42. 42.

    Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 16, 3732–3737 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).

    ADS  Article  Google Scholar 

  44. 44.

    Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Yun, S. H. et al. Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006).

    Article  Google Scholar 

  46. 46.

    Yun, S., Tearney, G., de Boer, J. & Bouma, B. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Opt. Express 12, 4822–4828 (2004).

    ADS  Article  Google Scholar 

  47. 47.

    Hariri, L. P. et al. Toward the guidance of transbronchial biopsy: identifying pulmonary nodules with optical coherence tomography. Chest 144, 1261–1268 (2013).

    Article  Google Scholar 

  48. 48.

    Hariri, L. P. et al. Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. Am. J. Respir. Crit. Care Med. 187, 125–129 (2013).

    Article  Google Scholar 

  49. 49.

    Adams, D. C. et al. Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo. Sci. Transl. Med. 8, 359ra131 (2016).

    Article  Google Scholar 

  50. 50.

    Hariri, L. P. et al. Endobronchial optical coherence tomography for low-risk microscopic assessment and diagnosis of idiopathic pulmonary fibrosis in vivo. Am. J. Respir. Crit. Care Med. 197, 949–952 (2018).

    Article  Google Scholar 

  51. 51.

    Nadkarni, S. K. et al. Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J. Am. Coll. Cardiol. 49, 1474–1481 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by funding from the National Institutes of Health (R01CA167827, R01HL133664 awarded to M.J.S.), Air Force Office of Scientific Research (MURI: FA9550-14-1-0389, FA9550-16-1-0156 awarded to F.C.), and the LUNGevity Foundation/Upstage Lung Cancer. Y.-W.H. and C.-W.Q. are supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Program (CRP award no. NRF-CRP15-2015-03). This work was performed in part at Harvard’s Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), supported by the National Science Foundation (NSF) under NSF award no. 1541959. Y.-W.H. thanks Y.-C. Chen for helpful comments and discussions.

Author information

Affiliations

Authors

Contributions

H.P., M.K. and Y.-W.H. carried out analyses, fabricated endoscopes, and planned and executed the experiments. Z.S. performed computational analysis for metalens design. L.P.H., M.J.S. and H.P. performed the ex vivo and in vivo imaging. M.J.S. and D.C.A. implemented the OCT system. H.P. and D.C.A. processed imaging data. V.D. and A.Z. assisted with experiments and fabrication. H.P. prepared the original manuscript with significant contributions from M.K., Y.-W.H. and C.-W.Q. M.J.S. and F.C. supervised the project and participated in manuscript preparation.

Corresponding authors

Correspondence to Federico Capasso or Melissa J. Suter.

Ethics declarations

Competing interests

H.P., M.K., Y.-W.H., Z.S., M.J.S. and F.C. are the inventors on a relevant provisional patent application (application number: 62598455) owned by Harvard University and Massachusetts General Hospital.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Additional information on the phase profile calculation for the metalens used, computational analysis of the nanopillars, endoscope wave analysis, analytic approach to spectral interferometry with a chromatic lens, endoscope characterization and the OCT imaging system implemented in the work

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pahlevaninezhad, H., Khorasaninejad, M., Huang, YW. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nature Photon 12, 540–547 (2018). https://doi.org/10.1038/s41566-018-0224-2

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing