Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

OPTICAL COMMUNICATIONS

Integrated combs drive extreme data rates

A chip-based optical frequency comb source has now been successfully used to send 661 Tbit sā€“1 over 9.6 km of multicore fibre, bringing considerable savings in the energy consumption and size of data transmission equipment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generating extreme transmission data rates with a single chip-scale optical frequency comb source.

References

  1. Hu, H. et al. Nat. Photon. https://doi.org/10.1038/s41566-018-0205-5 (2018).

  2. Cisco Visual Networking Index: Forecast and Methodology, 2016ā€“2021 White Paper No. 1465272001663118 (Cisco, 2018).

  3. Cai, J.-X. et al. 20 Tbit/s capacity transmission over 6,860 km. In Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011 PDPB4 (OSA, 2011).

  4. Ghazisaeidi, A. et al. 65Tb/s transoceanic transmission using probabilistically-shaped PDM-64QAM. In ECOC 2016-Post Deadline Paper; 42nd European Conference on Optical Communication 1ā€“3 (2016).

  5. Winzer, P. J. Opt. Photon. News 26, 28ā€“35 (2015).

  6. Richardson, D. J., Fini, J. M. & Nelson, L. E. Nat. Photon. 7, 354ā€“362 (2013).

  7. van Uden, R. G. H. et al. Nat. Photon. 8, 865ā€“870 (2014).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  8. Liu, X., Chandrasekhar, S. & Winzer, P. J. IEEE Signal Process. Mag. 31, 16ā€“24 (2014).

  9. Puttnam, B. J. et al. 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb. In 2015 European Conference on Optical Communication 1ā€“3 (2015).

  10. Wang, Z. et al. Light Sci. Appl. 6, e16260 (2017).

    ArticleĀ  Google ScholarĀ 

  11. Weimann, C. et al. Opt. Express 22, 3629ā€“3637 (2014).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  12. Pfeifle, J. et al. Opt. Express 23, 724ā€“738 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  13. Delā€™Haye, P. et al. Nature 450, 1214ā€“1217 (2007).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Science 332, 555ā€“559 (2011).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  15. Herr, T. et al. Nat. Photon. 8, 145ā€“152 (2014).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  16. Roelkens, G. et al. Frequency comb generation in III-V-on-silicon photonic integrated circuits. In Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF) OSA technical Digest (online) paper IM2A.5 (OSA, 2016).

  17. Levy, J. S. et al. Nat. Photon. 4, 37ā€“40 (2010).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  18. Brasch, V. et al. Science 351, 357ā€“360 (2016).

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  19. Quinlan, F. et al. Opt. Lett. 31, 2870ā€“2872 (2006).

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Blumenthal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenthal, D.J. Integrated combs drive extreme data rates. Nature Photon 12, 447ā€“450 (2018). https://doi.org/10.1038/s41566-018-0222-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0222-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing