Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance

Abstract

Lanthanide-doped upconversion nanoparticles (UCNPs) are promising single-molecule probes given their non-blinking, photobleaching-resistant luminescence on infrared excitation. However, the weak luminescence of sub-50 nm UCNPs limits their single-particle detection to above 10 kW cm−2, which is impractical for live cell imaging. Here, we systematically characterize single-particle luminescence for UCNPs with various formulations over a 106 variation in incident power, down to 8 W cm−2. A core–shell–shell (CSS) structure (NaYF4@NaYb1−xF4:Erx@NaYF4) is shown to be significantly brighter than the commonly used NaY0.78F4:Yb0.2Er0.02. At 8 W cm−2, the 8% Er3+ CSS particles exhibit a 150-fold enhancement given their high sensitizer Yb3+ content and the presence of an inert shell to prevent energy migration to defects. Moreover, we reveal power-dependent luminescence enhancement from the inert shell, which explains the discrepancy in enhancement factors reported by ensemble and previous single-particle measurements. These brighter probes open the possibility of cellular and single-molecule tracking at low irradiance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterizations of core–shell–shell NaYF4@NaYb0.98F4:Er0.02@NaYF4 UCNPs.
Fig. 2: UCL spectra and lifetime.
Fig. 3: Correlative SEM and wide-field fluorescence images of UCNPs.
Fig. 4: Single-particle saturation curves.

Similar content being viewed by others

References

  1. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004).

    Article  Google Scholar 

  2. Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015).

    Article  Google Scholar 

  3. Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    Article  Google Scholar 

  4. Li, X., Zhang, F. & Zhao, D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 44, 1346–1378 (2015).

    Article  Google Scholar 

  5. Wang, H.-Q., Batentschuk, M., Osvet, A., Pinna, L. & Brabec, C. J. Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011).

    Article  Google Scholar 

  6. Yang, D. et al. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 44, 1416–1448 (2015).

    Article  Google Scholar 

  7. Zheng, W. et al. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 44, 1379–1415 (2015).

    Article  Google Scholar 

  8. Liu, J. et al. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 136, 9701–9709 (2014).

    Article  Google Scholar 

  9. Fischer, L. H., Harms, G. S. & Wolfbeis, O. S. Upconverting nanoparticles for nanoscale thermometry. Angew. Chem. Int. Ed. 50, 4546–4551 (2011).

    Article  Google Scholar 

  10. Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotech. 9, 300–305 (2014).

    Article  ADS  Google Scholar 

  11. Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).

    Article  ADS  Google Scholar 

  12. Zhao, J. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotech. 8, 729–734 (2013).

    Article  ADS  Google Scholar 

  13. Ma, C. et al. Optimal /sensitizer concentration in single upconversion nanocrystals. Nano Lett. 17, 2858–2864 (2017).

    Article  ADS  Google Scholar 

  14. Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    Article  ADS  Google Scholar 

  15. Nadort, A. et al. Quantitative imaging of single upconversion nanoparticles in biological tissue. PLoS ONE 8, e63292 (2013).

    Article  ADS  Google Scholar 

  16. Wang, F. et al. Microscopic inspection and tracking of single upconversion nanoparticles in living cells. Light Sci. Appl. 7, 18007 (2018).

  17. Liu, Q. et al. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 133, 17122–17125 (2011).

    Article  Google Scholar 

  18. Wang, G., Peng, Q. & Li, Y. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200–14201 (2009).

    Article  Google Scholar 

  19. Wang, F. et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 10, 968 (2011).

    Article  ADS  Google Scholar 

  20. Vetrone, F., Naccache, R., Mahalingam, V., Morgan, C. G. & Capobianco, J. A. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 19, 2924–2929 (2009).

    Article  Google Scholar 

  21. Chen, G. et al. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012).

    Article  Google Scholar 

  22. Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photon. 6, 560–564 (2012).

    Article  ADS  Google Scholar 

  23. Chen, X., Peng, D., Ju, Q. & Wang, F. Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev. 44, 1318–1330 (2015).

    Article  Google Scholar 

  24. Wang, F., Wang, J. & Liu, X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int Ed. 49, 7456–7460 (2010).

    Article  Google Scholar 

  25. Johnson, N. J. et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017).

    Article  Google Scholar 

  26. Fischer, S., Bronstein, N. D., Swabeck, J. K., Chan, E. M. & Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals. Nano Lett. 16, 7241–7247 (2016).

    Article  ADS  Google Scholar 

  27. Wu, D. M., García-Etxarri, A., Salleo, A. & Dionne, J. A. Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 5, 4020–4031 (2014).

    Article  Google Scholar 

  28. He, J. et al. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+,Er3+ hybrid core–shell–satellite nanostructures. Light Sci. Appl. 6, e16217 (2017).

    Article  Google Scholar 

  29. Damasco, J. A. et al. Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF4 nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging. ACS Appl. Mater. Interfaces 6, 13884–13893 (2014).

    Article  Google Scholar 

  30. Burgess, A. E. The Rose model, revisited. J. Opt. Soc. Am. A 16, 633–646 (1999).

    Article  ADS  Google Scholar 

  31. Cheezum, M. K., Walker, W. F. & Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81, 2378–2388 (2001).

    Article  Google Scholar 

  32. Xiong, L. Q. et al. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 81, 8687–8694 (2009).

    Article  Google Scholar 

  33. Boyer, J. C. & van Veggel, F. C. Absolute quantum yield measurements of colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.C. acknowledges financial support from the Moore Foundation (no. 4309) and the Stanford Neurosciences Institute (no. 119600). TEM and SEM imaging were performed at the Stanford Microscopy Facility (National Institutes of Health grant SIG number 1S10RR02678001). EDX mapping and high-resolution TEM were performed at the TEM facility of Nanjing University of Posts and Telecommunications. The authors thank A. Brunger, E. Chan, B. Cohen, J. Collins, J. Dionne, D. Jin and X. Liu for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Q.L., Y.Z., C.S.P., T. Y. and L.-M.J. were responsible for the experimental work. Q.L., Y.Z., C.S.P. and S.C. conceived the project. S.C. supervised the research. All authors discussed the results. The manuscript was written by Q.L., Y.Z., C.S.P. and S.C.

Corresponding author

Correspondence to Steven Chu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Material synthesis and characterization; Supplementary References 1–6; Supplementary Figures 1–20; Supplementary Tables 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, Y., Peng, C.S. et al. Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance. Nature Photon 12, 548–553 (2018). https://doi.org/10.1038/s41566-018-0217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0217-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing