Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-source chip-based frequency comb enabling extreme parallel data transmission


The Internet today transmits hundreds of terabits per second, consumes 9% of all electricity worldwide and grows by 20–30% per year1,2. To support capacity demand, massively parallel communication links are installed, not scaling favourably concerning energy consumption. A single frequency comb source may substitute many parallel lasers and improve system energy-efficiency3,4. We present a frequency comb realized by a non-resonant aluminium-gallium-arsenide-on-insulator (AlGaAsOI) nanowaveguide with 66% pump-to-comb conversion efficiency, which is significantly higher than state-of-the-art resonant comb sources. This enables unprecedented high data-rate transmission for chip-based sources, demonstrated using a single-mode 30-core fibre. We show that our frequency comb can carry 661 Tbit s–1 of data, equivalent to more than the total Internet traffic today. The comb is obtained by seeding the AlGaAsOI chip with 10-GHz picosecond pulses at a low pump power (85 mW), and this scheme is robust to temperature changes, is energy efficient and facilitates future integration with on-chip lasers or amplifiers5,6.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AlGaAsOI photonic chip.
Fig. 2: Frequency comb broadening in an AlGaAsOI nanowaveguide.
Fig. 3: Generation and transmission of multi-100 Tbit s–1 data carried by the AlGaAsOI SPM-based frequency comb.
Fig. 4: 661 Tbit s–1 data transmission using chip-based frequency comb source.


  1. Cisco Visual Networking Index: Forecast and Methodology, 2016–2021 (Cisco, September 2017);

  2. Andrae, A. Total Consumer Power Consumption Forecast (2017);

  3. Hillerkuss, D. et al. 26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photon. 5, 364–371 (2011).

    Article  ADS  Google Scholar 

  4. Ataie, V. et al. Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer. J. Light. Technol. 33, 694–699 (2015).

    Article  ADS  Google Scholar 

  5. Uvin, S. et al. Narrow line width frequency comb based on an injection-locked III-V-on-silicon mode-locked laser. Opt. Express 24, 5277–5286 (2016).

    Article  ADS  Google Scholar 

  6. Akiyama, T. et al. An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).

    Article  ADS  Google Scholar 

  7. Essiambre, R.-J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. Light. Technol. 28, 662–701 (2010).

    Article  ADS  Google Scholar 

  8. Morioka, T. New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond. In I4th OptoElectronics and Communications Conference (OECC) FT4 (2009).

  9. Richardson, D. J. Filling the light pipe. Science 330, 327–328 (2010).

    Article  ADS  Google Scholar 

  10. Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

    Article  ADS  Google Scholar 

  11. Hu, H. et al. Single-source AlGaAs frequency comb transmitter for 661 Tbit/s data transmission in a 30-core fiber. In Conference on Lasers and Electro-Optics (CLEO): 2016 Postdeadline Paper Digest paper JTh4C.1 (2016).

  12. Matsuo, S. et al. High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems. J. Light. Technol. 34, 1464–1475 (2016).

    Article  ADS  Google Scholar 

  13. Mizuno, T. et al. Long-haul dense space-division multiplexed transmission over low-crosstalk heterogeneous 32-core transmission line using a partial recirculating loop system. J. Light. Technol. 35, 488–498 (2017).

    Article  ADS  Google Scholar 

  14. Kobayashi, T. et al. 1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels. In Optical Fiber Communication Conference Postdeadline Papers paper Th5B.1 (Optical Society of America, 2017).

  15. Puttnam, B. J. et al. 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb. In 2015 European Conference on Optical Communication (ECOC) paper PDP.3.1 (2015).

  16. Kemal, J. N. et al. 32QAM WDM transmission using a quantum-dash passively mode-locked laser with resonant feedback. In Optical Fiber Communication Conference Postdeadline Papers (2017) paper Th5C.3 (Optical Society of America, 2017).

  17. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  18. Fülöp, A. et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun. 9, 1598 (2018).

    Article  ADS  Google Scholar 

  19. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Huang, S.-W. et al. A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty. Sci. Adv. 2, e1501489 (2016).

    Article  ADS  Google Scholar 

  21. Halir, R. et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett. 37, 1685–1687 (2012).

    Article  ADS  Google Scholar 

  22. Kuyken, B. et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 6, 6310 (2015).

    Article  Google Scholar 

  23. Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).

    Article  Google Scholar 

  24. Hu, H. et al. Supercontinuum comb sources for broadband communications based on AlGaAs-on-insulator. In Proc. SPIE 10088, Nonlinear Frequency Generation and Conversion: Materials and Devices XVI 100880C (2017).

  25. Ottaviano, L., Pu, M., Semenova, E. & Yvind, K. Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator. Opt. Lett. 41, 3996–3999 (2016).

    Article  ADS  Google Scholar 

  26. Wathen, J. J. et al. Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides. Opt. Lett. 39, 3161–3164 (2014).

    Article  ADS  Google Scholar 

  27. Mori, K., Sato, K., Takara, H. & Ohara, T. Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands. Electron. Lett. 39, 544–546 (2003).

    Article  Google Scholar 

  28. Seimetz, M. High-Order Modulation for Optical Fiber Transmission (Springer, Berlin Heidelberg, 2009).

  29. Tong, Z. et al. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps. Opt. Express 20, 17610–17619 (2012).

    Article  ADS  Google Scholar 

  30. Baxter, G. et al. Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements. In 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference paper OTuF2 (2006).

  31. Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2) ETSI EN 302 307 V1.2.1 (Digital Video Broadcasting, 2009).

  32. Feng, D. et al. Compact single-chip VMUX/DEMUX on the silicon-on-insulator platform. Opt. Express 19, 6125–6130 (2011).

    Article  ADS  Google Scholar 

  33. Pathak, S. et al. Optimized silicon AWG with flattened spectral response using an MMI aperture. J. Light. Technol. 31, 87–93 (2013).

    Article  ADS  Google Scholar 

  34. Dar, R. et al. Impact of WDM channel correlations on nonlinear transmission. In ECOC 2016 42nd European Conference on Optical Communication 482–484 (2016).

Download references


This work was funded by the Silicon Photonics for Optical Communications (SPOC) research center of excellence (DNRF123), the Nanophotonics for Terabit Communications (NATEC) Villum center of excellence and the European Union–Japan coordinated R&D project on “Scalable And Flexible optical Architecture for Reconfigurable Infrastructure (SAFARI)” commissioned by the Ministry of Internal Affairs and Communications (MIC), Japan and the European Commission Horizon 2020. H.H. acknowledges P.-Y. Bony for help with the linewidth measurement.

Author information

Authors and Affiliations



H.H. conceived and designed the experiments. F.D.R. and E.P.d.S. conducted digital signal processing for the transmitted data. M.P. designed the AlGaAs device. H.H., F.D.R., F.Y., K.I. and M.N performed the transmission experiment. H.H., F.D.R and M.P. analysed the data. M.P., L.O., E.S. and K.Y. fabricated the AlGaAs device. H.H. and M.P. characterized the AlGaAs device. F.Y., Y.A., Y.S. and T.Mi. designed the multicore fibre. Y.A. and Y.S. fabricated the multicore fibre. T.Mi., Y.M., P.G., D.Z., M.G., L.K.O. and T.Mo. contributed to the experiment. H.H. and L.K.O. wrote the manuscript and all the co-authors contributed to the writing. Y.M., K.Y., T.Mo. and L.K.O. supervised the projects.

Corresponding author

Correspondence to Hao Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional theoretical and experimental results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Da Ros, F., Pu, M. et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nature Photon 12, 469–473 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing