Abstract
Observing and taming the effects arising from non-trivial light–matter interaction has always triggered scientists to better understand nature and develop photonic technologies. However, despite tremendous conceptual advances1,2, so far there have been only a few experimental proposals to reveal unusual optomechanical manifestations that are hardly seen in everyday life, such as negative radiation pressure3,4, transverse forces5,6 or left-handed torques7. Here, we report naked-eye identification of spin-dependent lateral displacements of centimetre-sized objects endowed with structured birefringence. Left-handed macroscopic rotational motion is also reported. The unveiled effects ultimately rely on spin–orbit optical interactions and are driven by lateral force fields that are five orders of magnitude larger than those reported previously, as a result of the proposed design. By highlighting the spin–orbit optomechanics of anisotropic and inhomogeneous media, these results allow structured light–matter interaction to move from a scientific curiosity to a new asset for the optical manipulation toolbox.
Access options
Subscribe to Journal
Get full journal access for 1 year
$169.00
only $14.08 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.





References
- 1.
Bliokh, K. Y., Rodrguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).
- 2.
Sukhov, S. & Dogariu, A. Non-conservative optical forces. Rep. Prog. Phys. 80, 112001 (2017).
- 3.
Brzobohaty, O. et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nat. Photon. 7, 123–127 (2013).
- 4.
Dogariu, A., Sukhov, S. & Saenz, J. J. Optically induced ‘negative forces’. Nat. Photon. 7, 24–27 (2013).
- 5.
Sukhov, S., Kajorndejnukul, V., Naraghi, R. R. & Dogariu, A. Dynamic consequences of optical spin–orbit interaction. Nat. Photon. 9, 809–812 (2015).
- 6.
Antognozzi, M. et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 12, 731–735 (2016).
- 7.
Hakobyan, D. & Brasselet, E. Left-handed optical radiation torque. Nat. Photon. 8, 610–614 (2014).
- 8.
Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014).
- 9.
Canaguier-Durand, A. & Genet, C. Transverse spinning of a sphere in a plasmonic field. Phys. Rev. A 89, 033841 (2014).
- 10.
Rodrguez-Fortuño, F. J., Engheta, N., Martnez, A. & Zayats, A. V. Lateral forces on circularly polarizable particles near a surface. Nat. Commun. 6, 8799 (2015).
- 11.
Scheel, S., Buhmann, S. Y., Clausen, C. & Schneeweiss, P. Directional spontaneous emission and lateral Casimir–Polder force on an atom close to a nanofiber. Phys. Rev. A 92, 043819 (2015).
- 12.
Movassagh, R. & Johnson, S. G. Optical Bernoulli forces. Phys. Rev. A 88, 023829 (2013).
- 13.
Sukhov, S., Kajorndejnukul, V., Broky, J. & Dogariu, A. Forces in Aharonov–Bohm optical setting. Optica 1, 383–387 (2014).
- 14.
Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015).
- 15.
Fardad, S. et al. Scattering detection of a solenoidal Poynting vector field. Opt. Lett. 41, 3615–3618 (2016).
- 16.
Wang, S. B. & Chan, C. T. Lateral optical force on chiral particles near a surface. Nat. Commun. 5, 3307 (2014).
- 17.
Cameron, R. P., Barnett, S. M. & Yao, A. M. Discriminatory optical force for chiral molecules. New J. Phys. 16, 013020 (2014).
- 18.
Hayat, A., Mueller, J. B. & Capasso, F. Lateral chirality-sorting optical forces. Proc. Natl Acad. Sci. USA 112, 13190–13194 (2015).
- 19.
Canaguier-Durand, A. & Genet, C. Plasmonic lateral forces on chiral spheres. J. Opt. 18, 015007 (2015).
- 20.
Alizadeh, M. & Reinhard, B. M. Transverse chiral optical forces by chiral surface plasmon polaritons. ACS Photon. 2, 1780–1788 (2015).
- 21.
Cipparrone, G., Hernandez, R. J., Pagliusi, P. & Provenzano, C. Magnus force effect in optical manipulation. Phys. Rev. A 84, 015802 (2011).
- 22.
Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).
- 23.
Nikolova, L. & Todorov, T. Diffraction efficiency and selectivity of polarization holographic recording. Opt. Acta 31, 579–588 (1984).
- 24.
Tabiryan, N. V., Nersisyan, S. R., Steeves, D. M. & Kimball, B. R. The promise of diffractive waveplates. Opt. Photon. News 21, 41–45 (2010).
- 25.
Simpson, S. H. & Hanna, S. Optical trapping of spheroidal particles in Gaussian beams. J. Opt. Soc. Am. A 24, 430–443 (2007).
- 26.
Haefner, D., Sukhov, S. & Dogariu, A. Conservative and nonconservative torques in optical binding. Phys. Rev. Lett. 103, 173602 (2009).
- 27.
Chen, J. et al. Negative optical torque. Sci. Rep. 42, 6386 (2014).
- 28.
Nieto-Vesperinas, M. Optical torque on small bi-isotropic particles. Opt. Lett. 40, 3021–3024 (2015).
- 29.
Canaguier-Durand, A. & Genet, C. Chiral route to pulling optical forces and left-handed optical torques. Phys. Rev. A 92, 043823 (2015).
- 30.
Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).
Acknowledgements
This study received financial support from CONACYT Mexico.
Author information
Affiliations
Contributions
H.M. realized the experimental set-up, conducted the experiments and analysed data. E.B. conceived the experiment, analysed data and supervised the project. E.B. wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Video 1
Macroscopic naked-eye observation of optical lateral force.
Supplementary Video 2
Macroscopic naked-eye observation of optical right-/left-handed torque.
Rights and permissions
About this article
Cite this article
Magallanes, H., Brasselet, E. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques. Nature Photon 12, 461–464 (2018). https://doi.org/10.1038/s41566-018-0200-x
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Optofluidic Microengine in A Dynamic Flow Environment via Self-Induced Back-Action
ACS Photonics (2020)
-
Theory of optical tweezing of dielectric microspheres in chiral host media and its applications
Scientific Reports (2020)
-
Optical binding and lateral forces on chiral particles in linearly polarized plane waves
Physical Review A (2020)
-
High-efficiency, tunable, fringe-field switching-mode beam steering based on a liquid crystal Pancharatnam phase
Applied Optics (2020)
-
Advances on studying optical forces: optical manipulation, optical cooling and light induced dynamics
Journal of Physics D: Applied Physics (2020)