Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques

Abstract

Observing and taming the effects arising from non-trivial light–matter interaction has always triggered scientists to better understand nature and develop photonic technologies. However, despite tremendous conceptual advances1,2, so far there have been only a few experimental proposals to reveal unusual optomechanical manifestations that are hardly seen in everyday life, such as negative radiation pressure3,4, transverse forces5,6 or left-handed torques7. Here, we report naked-eye identification of spin-dependent lateral displacements of centimetre-sized objects endowed with structured birefringence. Left-handed macroscopic rotational motion is also reported. The unveiled effects ultimately rely on spin–orbit optical interactions and are driven by lateral force fields that are five orders of magnitude larger than those reported previously, as a result of the proposed design. By highlighting the spin–orbit optomechanics of anisotropic and inhomogeneous media, these results allow structured light–matter interaction to move from a scientific curiosity to a new asset for the optical manipulation toolbox.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Spin-dependent lateral optical forces from spin–orbit scattering by a one-dimensional geometric phase optical element.
Fig. 2: Macroscopic direct observation of spin-dependent lateral optical forces.
Fig. 3: Principle of right- and left-handed optical radiation torques.
Fig. 4: Macroscopic direct observation of the angular analogue of lateral optical forces.
Fig. 5: Quantitative analysis of right- and left-handed optical radiation torque.

References

  1. 1.

    Bliokh, K. Y., Rodrguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Sukhov, S. & Dogariu, A. Non-conservative optical forces. Rep. Prog. Phys. 80, 112001 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Brzobohaty, O. et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nat. Photon. 7, 123–127 (2013).

    ADS  Article  Google Scholar 

  4. 4.

    Dogariu, A., Sukhov, S. & Saenz, J. J. Optically induced ‘negative forces’. Nat. Photon. 7, 24–27 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    Sukhov, S., Kajorndejnukul, V., Naraghi, R. R. & Dogariu, A. Dynamic consequences of optical spin–orbit interaction. Nat. Photon. 9, 809–812 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Antognozzi, M. et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 12, 731–735 (2016).

    Article  Google Scholar 

  7. 7.

    Hakobyan, D. & Brasselet, E. Left-handed optical radiation torque. Nat. Photon. 8, 610–614 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Canaguier-Durand, A. & Genet, C. Transverse spinning of a sphere in a plasmonic field. Phys. Rev. A 89, 033841 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Rodrguez-Fortuño, F. J., Engheta, N., Martnez, A. & Zayats, A. V. Lateral forces on circularly polarizable particles near a surface. Nat. Commun. 6, 8799 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Scheel, S., Buhmann, S. Y., Clausen, C. & Schneeweiss, P. Directional spontaneous emission and lateral Casimir–Polder force on an atom close to a nanofiber. Phys. Rev. A 92, 043819 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Movassagh, R. & Johnson, S. G. Optical Bernoulli forces. Phys. Rev. A 88, 023829 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Sukhov, S., Kajorndejnukul, V., Broky, J. & Dogariu, A. Forces in Aharonov–Bohm optical setting. Optica 1, 383–387 (2014).

    Article  Google Scholar 

  14. 14.

    Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015).

    Google Scholar 

  15. 15.

    Fardad, S. et al. Scattering detection of a solenoidal Poynting vector field. Opt. Lett. 41, 3615–3618 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Wang, S. B. & Chan, C. T. Lateral optical force on chiral particles near a surface. Nat. Commun. 5, 3307 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Cameron, R. P., Barnett, S. M. & Yao, A. M. Discriminatory optical force for chiral molecules. New J. Phys. 16, 013020 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Hayat, A., Mueller, J. B. & Capasso, F. Lateral chirality-sorting optical forces. Proc. Natl Acad. Sci. USA 112, 13190–13194 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Canaguier-Durand, A. & Genet, C. Plasmonic lateral forces on chiral spheres. J. Opt. 18, 015007 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Alizadeh, M. & Reinhard, B. M. Transverse chiral optical forces by chiral surface plasmon polaritons. ACS Photon. 2, 1780–1788 (2015).

    Article  Google Scholar 

  21. 21.

    Cipparrone, G., Hernandez, R. J., Pagliusi, P. & Provenzano, C. Magnus force effect in optical manipulation. Phys. Rev. A 84, 015802 (2011).

    ADS  Article  Google Scholar 

  22. 22.

    Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    ADS  Article  Google Scholar 

  23. 23.

    Nikolova, L. & Todorov, T. Diffraction efficiency and selectivity of polarization holographic recording. Opt. Acta 31, 579–588 (1984).

    ADS  Article  Google Scholar 

  24. 24.

    Tabiryan, N. V., Nersisyan, S. R., Steeves, D. M. & Kimball, B. R. The promise of diffractive waveplates. Opt. Photon. News 21, 41–45 (2010).

    Article  Google Scholar 

  25. 25.

    Simpson, S. H. & Hanna, S. Optical trapping of spheroidal particles in Gaussian beams. J. Opt. Soc. Am. A 24, 430–443 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    Haefner, D., Sukhov, S. & Dogariu, A. Conservative and nonconservative torques in optical binding. Phys. Rev. Lett. 103, 173602 (2009).

    ADS  Article  Google Scholar 

  27. 27.

    Chen, J. et al. Negative optical torque. Sci. Rep. 42, 6386 (2014).

    Google Scholar 

  28. 28.

    Nieto-Vesperinas, M. Optical torque on small bi-isotropic particles. Opt. Lett. 40, 3021–3024 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Canaguier-Durand, A. & Genet, C. Chiral route to pulling optical forces and left-handed optical torques. Phys. Rev. A 92, 043823 (2015).

    ADS  Article  Google Scholar 

  30. 30.

    Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This study received financial support from CONACYT Mexico.

Author information

Affiliations

Authors

Contributions

H.M. realized the experimental set-up, conducted the experiments and analysed data. E.B. conceived the experiment, analysed data and supervised the project. E.B. wrote the paper.

Corresponding author

Correspondence to Etienne Brasselet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Video 1

Macroscopic naked-eye observation of optical lateral force.

Supplementary Video 2

Macroscopic naked-eye observation of optical right-/left-handed torque.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magallanes, H., Brasselet, E. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques. Nature Photon 12, 461–464 (2018). https://doi.org/10.1038/s41566-018-0200-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing