Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure

Abstract

The availability of intense, ultrashort coherent radiation sources in the infrared region of the spectrum is enabling the generation of attosecond X-ray pulses via high-harmonic generation, pump–probe experiments in the ‘molecular fingerprint’ region and opening up the area of relativistic infrared nonlinear optics of plasmas. These applications would benefit from multi-millijoule single-cycle pulses in the mid- to long-wavelength infrared region. Here, we present a new scheme capable of producing tunable relativistically intense, single-cycle infrared pulses from 5 to 14 μm with a 1.7% conversion efficiency based on a photon frequency downshifting scheme that uses a tailored plasma density structure. The carrier-envelope phase of the long-wavelength infrared pulse is locked to that of the drive laser to within a few per cent. Such a versatile tunable infrared source may meet the demands of many cutting-edge applications in strong-field physics and greatly promote their development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of photon frequency downconversion in a nonlinear plasma wake using a 3D particle-in-cell simulation showing cut-away views of wakes.
Fig. 2: The structure and output of the LWIR source.
Fig. 3: Photon frequency downconversion in a tailored plasma structure.
Fig. 4: Parameter dependence of the LWIR pulse on the plasma falling edge scale length and the drive pulse CEP.
Fig. 5: Effect of variation of plasma density on output parameters of the LWIR pulse in the converter module.

References

  1. 1.

    Wolter, B. et al. Strong-field physics with mid-IR fields. Phys. Rev. X 5, 21034 (2015).

    Google Scholar 

  2. 2.

    Calabrese, C., Stingel, A. M., Shen, L. & Petersen, P. B. Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution. Opt. Lett. 37, 2265–2267 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Weisshaupt, J. et al. High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses. Nat. Photon. 8, 927–930 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Blaga, C. I. et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  Google Scholar 

  7. 7.

    Silva, F., Teichmann, S. M., Cousin, S. L., Hemmer, M. & Biegert, J. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nat. Commun. 6, 6611 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Hernández-García, C. et al. Zeptosecond high harmonic keV X-ray waveforms driven by midinfrared laser pulses. Phys. Rev. Lett. 111, 033002 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Andriukaitis, G. et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt. Lett. 36, 2755–2757 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Zhao, K. et al. Generation of 120 GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier. Opt. Lett. 38, 2159–2161 (2013).

    ADS  Article  Google Scholar 

  12. 12.

    von Grafenstein, L. et al. 5 μm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate. Opt. Lett. 42, 3796–3799 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Sanchez, D. et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm. Optica 3, 147–150 (2016).

    Article  Google Scholar 

  14. 14.

    von Grafenstein, L., Bock, M., Ueberschaer, D., Griebner, U. & Elsaesser, T. Picosecond 34 mJ pulses at kHz repetition rates from a Ho:YLF amplifier at 2 µm wavelength. Opt. Express 23, 33142–33149 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    von Grafenstein, L., Bock, M., Ueberschaer, D., Griebner, U. & Elsaesser, T. Ho:YLF chirped pulse amplification at kilohertz repetition rates—43 ps pulses at 2 μm with GW peak power. Opt. Lett. 41, 4668–4671 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Malevich, P. et al. Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier. Opt. Lett. 41, 930–933 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Haberberger, D., Tochitsky, S. & Joshi, C. Fifteen terawatt picosecond CO2 laser system. Opt. Express 18, 17865–17875 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Polyanskiy, M. N., Pogorelsky, I. V. & Yakimenko, V. Picosecond pulse amplification in isotopic CO2 active medium. Opt. Express 19, 7717–7725 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    Pupeza, I. et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nat. Photon. 9, 721–724 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Krogen, P. et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nat. Photon. 11, 222–226 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Nomura, Y. et al. Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases. Opt. Express 20, 24741–24747 (2012).

    ADS  Article  Google Scholar 

  22. 22.

    Fuji, T., Nomura, Y. & Shirai, H. Generation and characterization of phase-stable sub-single-cycle pulses at 3000 cm−1. IEEE J. Sel. Top. Quantum Electron. 21, 8700612 (2015).

    Article  Google Scholar 

  23. 23.

    Pigeon, J. J., Tochitsky, S. Y., Welch, E. C. & Joshi, C. Measurements of the nonlinear refractive index of air, N2, and O2 at 10 μm using four-wave mixing. Opt. Lett. 41, 3924–3927 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Junginger, F. et al. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett. 35, 2645–2647 (2010).

    ADS  Article  Google Scholar 

  25. 25.

    Silva, F. et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal. Nat. Commun. 3, 807 (2012).

    Article  Google Scholar 

  26. 26.

    Pigeon, J. J., Tochitsky, S. Y., Gong, C. & Joshi, C. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses. Opt. Lett. 39, 3246–3249 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Mitrofanov, A. V. et al. Subterawatt few-cycle mid-infrared pulses from a single filament. Optica 3, 299–302 (2016).

    Article  Google Scholar 

  28. 28.

    Shumakova, V. et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nat. Commun. 7, 12877 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Liang, H. et al. High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nat. Commun. 8, 141 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Gordon, D. F. et al. Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. Phys. Rev. Lett. 90, 215001 (2003).

    ADS  Article  Google Scholar 

  31. 31.

    Tsung, F. S., Ren, C., Silva, L. O., Mori, W. B. & Katsouleas, T. Generation of ultra-intense single-cycle laser pulses by using photon deceleration. Proc. Natl Acad. Sci. USA 99, 29–32 (2002).

    ADS  Article  Google Scholar 

  32. 32.

    Sprangle, P., Esarey, E. & Ting, A. Nonlinear theory of intense laser–plasma interactions. Phys. Rev. Lett. 64, 2011–2014 (1990).

    ADS  Article  Google Scholar 

  33. 33.

    Sprangle, P., Esarey, E. & Ting, A. Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41, 4463–4469 (1990).

    ADS  Article  Google Scholar 

  34. 34.

    Wilks, S. C., Dawson, J. M., Mori, W. B., Katsouleas, T. & Jones, M. E. Photon accelerator. Phys. Rev. Lett. 62, 2600–2603 (1989).

    ADS  Article  Google Scholar 

  35. 35.

    Esarey, E., Ting, A. & Sprangle, P. Frequency shifts induced in laser pulses by plasma waves. Phys. Rev. A 42, 3526–3531 (1990).

    ADS  Article  Google Scholar 

  36. 36.

    Mori, W. B. The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers. IEEE J. Quantum Electron. 33, 1942–1953 (1997).

    ADS  Article  Google Scholar 

  37. 37.

    Zhu, W., Palastro, J. P. & Antonsen, T. M. Pulsed mid-infrared radiation from spectral broadening in laser wakefield simulations. Phys. Plasmas 20, 073103 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Pai, C.-H. et al. Generation of intense ultrashort midinfrared pulses by laser–plasma interaction in the bubble regime. Phys. Rev. A 82, 063804 (2010).

    ADS  Article  Google Scholar 

  39. 39.

    Guénot, D. et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photon. 11, 293–296 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Fonseca, R. A. et al. OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In Computational Science — ICCS 2002 (eds Sloot, P. M. A., Tan, C. J. K., Dongarra, J. J. & Hoekstra, A. G.) 342–351 (Lecture Notes in Computer Science Vol. 2331, Springer, Berlin, Heidelberg, 2002).

  41. 41.

    Fonseca, R. A. et al. One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations. Plasma Phys. Control. Fusion 50, 124034 (2008).

    ADS  Article  Google Scholar 

  42. 42.

    Ralph, J. E. et al. Self-guiding of ultrashort, relativistically intense laser pulses through underdense plasmas in the blowout regime. Phys. Rev. Lett. 102, 175003 (2009).

    ADS  Article  Google Scholar 

  43. 43.

    Xu, X. L. et al. High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime. Phys. Rev. Accel. Beams 20, 111303 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Guillaume, E. et al. Electron rephasing in a laser-wakefield accelerator. Phys. Rev. Lett. 115, 155002 (2015).

    ADS  Article  Google Scholar 

  45. 45.

    Lifschitz, A. F. et al. Particle-in-cell modelling of laser–plasma interaction using Fourier decomposition. J. Comput. Phys. 228, 1803–1814 (2009).

    ADS  Article  MATH  Google Scholar 

  46. 46.

    Davidson, A. et al. Implementation of a hybrid particle code with a PIC description in rz and a gridless description in ϕ into OSIRIS. J. Comput. Phys. 281, 1063–1077 (2015).

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) Grants No. 11425521, No. 11535006, No. 11475101 and No. 11775125, the National Basic Research Program of China No. 2013CBA01501, the Thousand Young Talents Program, the Air Force Office of Scientific Research (AFOSR) under award number FA9550-16-1-0139 DEF, the Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) (4-442521-JC-22891), the US Department of Energy grant DE-SC001006 and the Ministry of Science and Technology of Taiwan under Grant No. MOST-105-2112-M-001-005-M3. The simulations were performed on Sunway TaihuLight.

Author information

Affiliations

Authors

Contributions

Z.N., C.-H.P. and W.L. proposed the concept. Z.N. developed the theoretical model and carried out the simulations. Z.N., C.J., W.L. and C.-H.P. wrote the paper. All authors contributed extensively to the work presented in this paper.

Corresponding authors

Correspondence to Chih-Hao Pai or Wei Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nie, Z., Pai, C., Hua, J. et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure. Nature Photon 12, 489–494 (2018). https://doi.org/10.1038/s41566-018-0190-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing